
Functional Programming
Lecture 13

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz



Folding

Functions foldl and foldr allow traversing a list and
aggregating its elements by a given function.

foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

> foldl max 0 [3,4,5,2,0]
5

> foldl (+) 0 [3,4,5,2,0]
14

Foldable splits the traversing part from the aggregating part.

1



Monoids



Abstract aggregating

Semigroup 〈S, ∗〉 is a set S endowed with a binary operation ∗
satisfying

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Monoid 〈M, ∗,u〉 is a semigroup 〈M, ∗〉 with a constant u ∈ M
satisfying

u ∗ x = x = x ∗ u

Examples

• 〈N,+, 0〉
• 〈R, ·, 1〉
• 〈[a],++,[]〉 lists over a type a (free monoid)
• 〈AA, ◦, id〉 selfmaps f : A→ A form a monoid under
composition ◦

• 〈[a,b],min,b〉 and 〈[a,b],max,a〉
2



Type classes Semigroup and Monoid

class Semigroup a where
(<>) :: a -> a -> a

class Semigroup a => Monoid a where
mempty :: a
mappend :: a -> a -> a
mconcat :: [a] -> a

mappend = (<>)

instance Semigroup [a] where
(<>) = (++)

instance Monoid [a] where
mempty = []

3



Sum and Product

As a type can have only a single instance of Monoid, we use
type wrappers to define various monoidal instances over a
type.

newtype Sum a = Sum {getSum :: a}

instance Num a => Semigroup (Sum a)
(Sum x) <> (Sum y) = Sum (x+y)

instance Num a => Monoid (Sum a)
mempty = Sum 0

> (Sum 7) <> (Sum 4)
Sum {getSum = 11}

newtype Product a = Product {getProduct :: a}

4



Further instances

Any (resp. All) is the disjunctive (resp. conjunctive) monoid
on Bool.

> (Any False) <> (Any True) <> (Any False)
Any {getAny = True}

For a monoid m its dual monoid is Dual m

> (Dual "a") <> (Dual "b") <> (Dual "c")
Dual {getDual = "cba"}

Product of monoids

> (Sum 2,Product 3) <> (Sum 5,Product 7)
(Sum {getSum = 7},Product {getProduct = 21})

5



Foldables



Folding lists

Let M = 〈M, ∗,u〉 be a monoid, f : A→ M and lst = [a1, . . . ,an] a
list of elements from A.

foldMap of lst w.r.t. M and f is the composition of map f
followed by the aggregation.

a1

f (a1)

a2

f (a2)

a3

f (a3)

· · ·

f (· · · )

an−2

f (an−2)

an−1

f (an−1)

an

f (an)∗ ∗ ∗ ∗ ∗ ∗ ∗ = resultu

6



FoldMap

Once we are able to traverse a data structure and collect some
elements, we can do foldMap.

a1

a2
a3

an−2

an−1

an

f (a1) f (a2) f (a3) f (· · · ) f (an−2) f (an−1) f (an)∗ ∗ ∗ ∗ ∗ ∗ ∗ = resultu

7



Foldable

In the library Data.Foldable

class Foldable t where
fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b
...
{-# MINIMAL foldMap | foldr #-}

8



Foldable functions

If we define foldMap or foldr, the following functions are
defined automatically:

toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

9



Foldable instances

foldMap :: Monoid m => (a -> m) -> [a] -> m

instance Foldable [] where
foldMap f = mconcat . map f

data Tree a = Leaf a | Node (Tree a) (Tree a)

foldMap :: Monoid m => (a -> m) -> Tree a -> m

instance Foldable Tree where
foldMap f (Leaf x) = f x
foldMap f (Node l r) =

foldMap f l <> foldMap f r

Further instances: Set, Map (foldMap traverses through values)

10



Summary

• Semigroup and Monoid are type classes abstracting
value aggregation.

• Foldable is a type class generalizing foldr and foldl.

11



Exams


	Monoids
	Foldables
	Exams

