
Functional Programming
Lecture 12

Rostislav Horčík

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz

Stateful computations

Stateful computation

Stateful computation uses a memory storage (state) to
produce its output.

State

Computation 1 Computation 2input output

get/put get/put

1

Tree labelling

Recall the exercise where we had to label tree leafs by
consecutive natural numbers.

*

* ’d’

’a’ *

’b’ ’c’

*

* (’d’,3)

(’a’,0) *

(’b’,1) (’c’,2)

We need a state storing the information which numbers were
already used.

2

Tree labelling

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Show

labelHlp :: Tree a -> Int -> (Tree (a, Int), Int)
labelHlp (Leaf x) n = (Leaf (x, n), n+1)
labelHlp (Node left right) n =

let (left', n') = labelHlp left n
(right', n'') = labelHlp right n'

in (Node left' right', n'')

labelTree :: Tree a -> Tree (a, Int)
labelTree t = fst (labelHlp t 0)

3

Stateful computation

In functional programming, we have to include state into
function types.

f1 f2
x x′

s s′

x′′

s′′

However, monads can help us to separate the state
manipulation from the actual computation.

4

State monad

State monad

newtype State s a = S { runState :: s -> (a, s) }

A stateful computation depending on a state of type s with an
input of type b outputing a value of type a:

st :: b -> State s a

st
x :: b x' :: a

u :: s u' :: s

5

Functor instance

instance Functor (State s) where
-- fmap :: (a -> b) -> State s a -> State s b
fmap f st = S (\s ->
let (x,s') = runState st s
in (f x,s'))

st
f

s s′

f (x)x

6

Applicative instance

instance Applicative (State s) where
-- pure :: a -> State s a

pure x = S (\s -> (x,s))
-- (<*>) :: State s (a -> b) ->
-- State s a -> State s b

stf <*> stx = S (\s ->
let (f,s') = runState stf s

(x,s'') = runState stx s'
in (f x, s''))

7

Applicative instance

stf
stx

f

s

f (x)

s′′

f

s′

x

8

Monadic instance

instance Monad (State s) where
-- (>>=) :: State s a ->
-- (a -> State s b) -> State s b

stx >>= f = S (\s ->
let (x,s') = runState stx s
in runState (f x) s')

stx f
s s′′

x′
x

s′

Bind operator is just composition of stateful computations!

9

Functions manipulating state monad

State monad is actually implemented in
Control.Monad.Trans.State. The library provides further
useful functions.

state :: (s -> (a,s)) -> State s a
state f = S f

evalState :: State s a -> s -> a
evalState st x = fst $ runState st x

execState :: State s a -> s -> s
execState st x = snd $ runState st x

10

Tree labelling again

fresh :: State Int Int
fresh = state (\n -> (n, n+1))

label :: Tree a -> State Int (Tree (a, Int))
label (Leaf x) = do i <- fresh

return $ Leaf (x, i)
label (Node l r) = do l' <- label l

r' <- label r
return $ Node l' r'

labelTree :: Tree a -> Tree (a, Int)
labelTree t = evalState (label t) 0

11

Functions manipulating state monad

Read, write and update of state can be done by

get :: State s s
get = state (\x -> (x,x))

put :: s -> State s ()
put x = state (_ -> ((),x))

modify :: (s -> s) -> State s ()
modify f = do x <- get

put (f x)
return ()

12

Generating random values

Random values

A function returning a random value cannot be pure so it has
to be enclosed inside IO monad.

However, we want most of our code to be pure.

Pseudorandom generators allow generating random values
based on an initial seed.

f (seed) = (x,newseed) where x is a random value

rand100 :: Int -> (Int, Int)
rand100 seed = (n, newseed) where
newseed = (1664525 * seed + 1013904223)

`mod` (2^32)
n = (newseed `mod` 100)

13

System.Random

Library System.Random is designed to generate
pseudorandom values.

It uses values of StdGen as seed values (called generators). To
create a new generator, call the function:

mkStdGen :: Int -> StdGen

Given a generator, a random value of type a in the given
interval, can be generated by

randomR :: (RandomGen g, Random a) =>
(a, a) -> g -> (a, g)

randomRIO :: Random a => (a, a) -> IO a

Random is a type class of the types for which we can generate
pseudorandom values. 14

Generating a sequence

> randomR (0,100) (mkStdGen 1)
(46,80028 40692)

rand3Int :: Int -> StdGen -> ([Int], StdGen)
rand3Int m g0 = ([n1,n2,n3],g3)

where
(n1,g1) = randomR (0,m) g0
(n2,g2) = randomR (0,m) g1
(n3,g3) = randomR (0,m) g2

15

Pseudorandom values via state monad

type R a = State StdGen a

randIntS :: Int -> R Int
randIntS m = state $ randomR (0,m)

rand3IntS :: Int -> R [Int]
rand3IntS n = do n1 <- randIntS n

n2 <- randIntS n
n3 <- randIntS n
return [n1,n2,n3]

Alternatively, we can use monadic version of replicate

rand3IntS n = replicateM 3 (randIntS n)

16

Example

manyRandIntS :: Int -> R [Int]
manyRandIntS n = mapM randIntS $ repeat n

main :: IO ()
main = do
seed <- randomIO :: IO Int
putStrLn "How many random numbers do you want?"
n <- read <$> getLine :: IO Int
let rs = take n $ evalState

(manyRandIntS 100) (mkStdGen seed)
print rs

17

Summary

• Stateful computations can be modelled via state monad.
• State s a encloses a function of type s -> (a,s).
• It allows hiding of passing the state infomation.
• Pseudorandom values can be generated by functions from
System.Random.

• State monad is useful to pass new generators.

18

	Stateful computations
	State monad
	Generating random values

