
Functional Programming
Lecture 12

Rostislav Horčík

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz

Applicative functors

Functor subclasses

Functor

Applicative

Monad Alternative

1

Functors

Functor instances allow to lift a unary map to the functorial
context.

fmap :: (a -> b) -> f a -> f b

(+2) :: Num a => a -> a lifts to
fmap (+2) :: (Num b, Functor f) => f b -> f b
But we cannot lift binary (+) :: Num a => a -> a -> a

Just 3 <+> Just 5

If we lift (+) by fmap,

fmap (+) :: (Num a, Functor f) => f a -> f (a -> a)

fmap (+) (Just 2) :: Num a => Maybe (a -> a)

2

Instances

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
_ <*> Nothing = Nothing
Just f <*> Just a = Just (f a)

instance Applicative [] where
pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]

pure (,) <*> [1,2,3] <*> ['a','b','c']

4

Monadic parsing

Parser

Parser is a program taking an input string and converting it
into a data structure containing all the information encoded in
the input string. E.g. a source file is coverted into AST.

data Expr a = Val a
| Var String
| Add [Expr a]
| Mul [Expr a] deriving Eq

"(4 * (5 + 7 + x))"

is converted into

Mul [Val 4, Add [Val 5,Val 7,Var "x"]]

5

Grammar

<expr> -> <space>* <expr'> <space>*
<expr'> -> <var>

| <val>
| <add>
| <mul>

<var> -> <lower> <alphanum>*
<val> -> <int> "." <digit>+ | <int>
<int> -> "-" <digit>+ | <digit>+

<add> -> "(" <expr> ("+" <expr>)+ ")"
<mul> -> "(" <expr> ("*" <expr>)+ ")"

6

Type constructor parser

Parser a is a function taking a string and returning a parsed
value of type a together with the remaining unused string. The
parsing may fail.

newtype Parser a =
P { parse :: String -> Maybe (a, String) }

item :: Parser Char
item = P (\inp -> case inp of

"" -> Nothing
(x:xs) -> Just (x,xs))

7

Functor instance

instance Functor Parser where
-- fmap :: (a -> b) -> Parser a -> Parser b
fmap f p = P (\inp ->
case parse p inp of

Nothing -> Nothing
Just (v,out) -> Just (f v, out))

> parse (fmap (=='c') item) "cde"
Just (True,"de")

> parse (fmap (=='c') item) "ade"
Just (False,"de")

8

Applicative instance

instance Applicative Parser where
--(<*>) :: Parser (a -> b) -> Parser a -> Parser b
pg <*> px = P (\inp ->
case parse pg inp of

Nothing -> Nothing
Just (g,out) -> parse (fmap g px) out)

pure v = P (\inp -> Just (v,inp))

> parse (pure (/=) <*> item <*> item) "abc"
Just (True,"c")

> parse (pure (/=) <*> item <*> item) "aac"
Just (False,"c")

9

Monad instance

instance Monad Parser where
--(>>=) :: Parser a -> (a -> Parser b) -> Parser b
p >>= f = P (\inp ->
case parse p inp of

Nothing -> Nothing
Just (v,out) -> parse (f v) out)

> parse (item >>= \c ->
if c == 'a' then item else return ' ') "abc"

Just ('b',"c")

> parse (item >>= \c ->
if c == 'a' then item else return ' ') "xbc"

Just (' ',"bc")

10

Alternative instance

instance Alternative Parser where
-- empty :: Parser a
empty = P (_ -> Nothing)

-- (<|>) :: Parser a -> Parser a -> Parser a
p <|> q = P (\inp ->

case parse p inp of
Nothing -> parse q inp
Just (v,out) -> Just (v,out))

> parse empty "abc"
Nothing
> parse (item <|> return 'x') ""
Just ('x',"")

11

Building parsers

sat :: (Char -> Bool) -> Parser Char
sat pr = item >>= \x -> if pr x then return x

else empty
alphaNum :: Parser Char
alphaNum = sat isAlphaNum

char :: Char -> Parser Char
char c = sat (== c)
string :: String -> Parser String
string [] = return []
string (x:xs) = char x

>> string xs
>> return (x:xs)

12

many and some

Automatically defined for instances of Alternative

many :: f a -> f [a]
some :: f a -> f [a]

many p = some p <|> pure []
some p = pure (:) <*> p <*> many p

many p, some p — both perform repeatedly parser p until it
fails and returns a list of its results.

many p — always succeeds, might return the empty list

some p — succeeds if p succeeds at least once

parse (some (char 'a')) "aaabc"

13

Homework assignment 4 — Parser of �-programs

Aim: To practice monadic parsing in Haskell, together with HW3
build a complete �-calculus interpreter

0 := (\s.(\z.z))
S := (\w.(\y.(\x.(y ((w y) x)))))
1 := (S 0)
2 := (S 1)
((2 S) 1)

Points: 13
Deadline: in 3 weeks (May 26)
Penalty: after deadline -1 points every day (at most -12)
Description: all details can be found in CW

14

Summary

• Applicative is a type subclass of Functor allowing to
lift n-ary maps to the functorial context.

• Parser is a type constructor returning a function of type
String -> Maybe (a, String).

• We defined its Monad instance.
• It allows to build more complex parsers out of the simple
ones.

• Alternative is a type subclass of Applicative.
• It allows to choice between several parsers.
• It implements many p and some p behaving like p* and
p+ respectively.

15

	Applicative functors
	Monadic parsing

