
Functional Programming
Lecture 10

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Mutating the world

I/O operations are fundamentally mutating:

> putStrLn "Hello World" | stdout: Hello World

> putStrLn "Hello World" | stdout: Hello World
Hello World

Unless the whole world is an argument to our functions:

putStrLn :: String -> World -> World
getLine :: World -> (String, World)

1

Mutating the world

putStrLn :: String -> World -> World
getLine :: World -> (String, World)

With the definitions above we can write pure I/O functions:

helloworld :: World -> World
helloworld w1 = w4 where
w2 = putStrLn "What is your name?" w1
(name, w3) = getLine w2
w4 = putStrLn ("Hello " ++ name) w3

2

Mutating the world

In practice we don’t mutate the world, but we use monads.

helloworld :: IO ()
helloworld = do
putStrLn "What is your name?"
name <- getLine
putStrLn ("Hello " ++ name)

Monads extend far beyond I/O and mutation. Common
examples are: Maybe, list [], State.

3

IO actions

IO actions

Haskell separates the part of the program with side effects
using values of special types

IO is a functor satisfying further properties (monad) such that

a value of type IO a is an action, which when executed
produces a value of type a

type IO a = World -> (a, World)

putStrLn :: String -> IO ()
getLine :: IO String

The IO actions can be composed to build up more complex
actions.

4

Hello World

Haskell executes only one IO action in a program, the action
returned by the function main.

main :: IO ()
main = putStrLn "Hello, World!"

$ ghc <filename.hs>; ./<filename>
$ runghc <filename.hs>

IO actions (not only the one returned by main) can be also
executed in GHCi by evaluating them.

5

Hello World

We can try to rewrite helloworld in terms of IO:

helloworld :: IO ()
helloworld =
let ac_name = getLine -- IO String
-- This fails! We cannot ++ with an action!
in putStrLn ("Hello " ++ ac_name)

What we need is:

??? :: IO String -> (String -> IO ()) -> IO ()

6

Sequencing computations

Last time we saw how to compose failing computations by

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

d Maybe a
g

a Maybe bh

Maybe bandThen

andThen is in fact the bind operator >>= making the functor
Maybe into a monad.

7

Monads

Monads

Maybe, IO, [] are instances of a type class called monad:

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

>>= pulls out the result stored in m a and pass it to another
computation represented by a function of type a -> m b.

>> composes two computations and the second one ignores
the result of the first one.

return allows to embed “pure” values into the computational
context.

8

Monads are functors

>> can be implemented in terms of >>= as follows:

x >> f = x >>= _ -> f

Every monad is a functor since

fmap f x = x >>= return . f

Note that

x :: m a
f :: a -> b
return :: b -> m b
return . f :: a -> m b

9

IO Monad

(>>) :: IO a -> IO b -> IO b

composes two IO actions (the first action is performed only for
its side-effect), e.g.

putStrLn "Hello" >> putStrLn "World"

(>>=) :: IO a -> (a -> IO b) -> IO b

x >>= f is the action performing first x, passing its result to f
that returns a second action to be performed, e.g.

getLine >>= putStrLn

10

Hello World again

helloworld in terms of >>=:

helloworld :: IO ()
helloworld =
putStrLn "What is your name?" >>
getLine >>=
\name -> putStrLn ("Hello " ++ name)

11

return

return :: a -> IO a

creates an IO action that does nothing except produces the
given value.

Useful when we need to combine results of previous actions by
a pure function:

getSquare :: IO Int
getSquare = putStrLn "Enter number:"

>> getLine
>>= \line -> let n = read line

in return (n*n)

12

Maybe monad

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

x >>= f = case x of
Nothing -> Nothing
Just y -> f y

return x = Just x

safeSecond :: [a] -> Maybe a
safeSecond xs = safeTail xs >>= safeHead

sumFirstTwo :: Num a => [a] -> Maybe a
sumFirstTwo xs = safeHead xs

>>= \first -> safeSecond xs
>>= \second ->

return (first + second)

13

Separation of IO side-effects

We can access the value stored in Maybe monad via the data
constructor Just.

getMaybe :: Maybe Int -> Int
getMaybe (Just x) = x
getMaybe _ = 0

However, we cannot do the same for IO. There is no accessible
data constructor allowing to do pattern matching on values of
type IO a. Thus there is no function of type

unsafe :: IO a -> a

Consequently, all the values obtained as results of impure
actions with side-effects have to be closed inside IO.

We can manipulate them only via >>=.
14

Do notation

do is a syntax block, such as where and let

• action on a separate line gets executed
• v <- x runs action x and binds the result to v
• let a = b defines a to be the same as b until the end of
the block (no in is used)

getSquare2 :: IO Int
getSquare2 = do putStrLn "Enter number:"

line <- getLine
let n = read line
return (n*n)

15

List monad

(>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= f = concat $ map f xs
return x = [x]

> [1,2,3] >>= \x -> [x,10*x,100*x]
[1,10,100,2,20,200,3,30,300]

16

Monadic sequencing

Suppose we have a list of monadic actions and we want to
evaluate all of them.

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

ioActions :: [IO ()]
ioActions = [print "Hello!"

, putStrLn "just kidding",
, getLine >> print]

> sequence_ ioActions

17

Monadic maps

Monadic analogs of map

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

> mapM putStrLn ["a","b","c"]
a
b
c
[(),(),()]

18

Homework assignment 4 — Parser of λ-programs

Aim: To practice monadic parsing in Haskell, together with HW3
build a complete λ-calculus interpreter

0 := (\s.(\z.z))
S := (\w.(\y.(\x.(y ((w y) x)))))
1 := (S 0)
2 := (S 1)
((2 S) 1)

Points: 13
Deadline: June 8
Penalty: after deadline -1 points every day (at most -12)
Description: all details can be found in CW

19

Summary

• Results of IO actions are enclosed in IO monad.
• We can manipulate them only via monadic operators.
• Monads are special functors allowing to sequence
monadic actions/computations via the bind operator >>=.

• Other monads are e.g. Maybe, [].
• Action sequencing can be also done in do-blocks.
• There are monadic variants of map: mapM, mapM_.
• A list of actions can composed by sequence or
sequence_.

20

Functors as computational context

Functors as computational context

Functor is a type constructor f having an implementation of

fmap :: (a -> b) -> f a -> f b

It can be also viewed as computational context. f a stores the
result of a computation.

• Maybe a — result of a possibly failing computation
• [a] — all possible results of a non-deterministic
computation

• IO a — result of a computation having an IO side-effect

IO functor allows haskell programs to execute computations
having IO side-effects. It has to satisfy futher properties than
being a functor. It must be a monad.

21

Computational contexts

Suppose we have a computation g :: d -> f a whose
result is stored in f a. Then we can transform its result by any
“pure” function h.

d f a
g

a b
h

f b
fmap h

22

Computational contexts

Suppose h :: a -> f b is not “pure” and we want to chain
both computations g followed by h. Now fmap alone does not
suffice.

d f a
g

a f b
h

f (f b)
fmap h

We don’t want results of type Maybe (Maybe a) or
IO (IO a).

23

	IO actions
	Monads
	Functors as computational context

