Functional Programming
Lecture 9

Rostislav Horcik
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Pattern matching on records

Pattern matching on records

data Vector a = Vec { x::a, y::a, z::a }
deriving Show

isZero :: (Eq a, Num a) => Vector a -> Bool
isZero Vec{x=0,y=0,z=0} = True

isZero _ = False

last :: Vector a -> a

last Vec{z=w} = w
With the extension {-# LANGUAGE RecordWildCards #-}

norm :: Floating a => Vector a -> a
norm Vec{..} = sqrt (x"2 + y"2 + z72)

Type classes

Zoo of typeclasses

Bounded Eq Show Read
readsPrec R.readprec
mingound maxBound =) show showstise FesasLiss
R. readListPrec
Enum Ord Num Semigroup
g 9 (<)) 0= ») ™) (<>)
toEnun fronEnum &y &9 49 6 negate abs signum B.seoneat
3 fronlnteger B.stines
enunFromThen
enunFronTo
enunFronThenTo
Real Fractional Monoid
. ecip
Ciisiencl fromRational mappend mconcat
Integral RealFrac Floating Functor
pi exp log sart map (<$)
quot rem —— (") logBase
quotRen divHod e asin acos atan
toln teg = Sinh cosh tanh
asinh acosh atanh 5
L n1 Applicative
L.loglpexp L. logimexp
) () ()
pure B.liftA2
RealFloat
flatRadix floatdigits floatRange [elkaGie
decodeFloat encodeFloat
F.fold foldHap
sigiricnd ponent scaterose o T Monad
is: SN isInfinite .
isNegativeZero isDenormalized L e >
& . F.tolist null length elem return (
atan naximum miniun sun product) @
Traversable

traverse sequenceA maplt

sequence

Read is a type class opposite to Show. It allows to parse
strings into values for all instances of Read via the function

read :: Read a => String -> a

read is polymorphic but sometimes we need an explicit type

annotation.

> read "3" -- fails
> read "3" :: Int

3

> read "[1,2,3]" :: [Float]
[1.0,2.0,3.0]

Type classes of parametric types

Higher-order functions

Familiar higher-order functions are available in Haskell too

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
(.) :: (b->c) ->(a->b) ->a ->c

foldl ::

Foldable t => (b -> a ->b) ->b ->t a ->b
foldr ::

Foldable t => (a -> b ->b) ->b ->t a -> b

> foldl (+) 0 [1,2,3]
6

map :: (a -> b) -> [a] -> [b]
mapMap :: (a -> b) -> Map k a -> Map k b
treeMap :: (a -> b) -> Tree a -> Tree b

Functor is a type class collecting type constructors that create
structure we can map over.

class Functor f where
fmap :: (a ->b) ->fa->fb
(<$) :: a->fb->fa

<$> is an infix operator equivalent to fmap

instance Functor [] where
fmap = map

Functor example

data Tree a = Tree a [Tree a] deriving Show

tree :: Tree Int
tree = Tree 1 [Tree 2 [Tree 3 []], Tree 4 []1]

instance Functor Tree where
fmap f (Tree x []1) = Tree (f x) []
fmap f (Tree x ts) Tree (f x)
(map (fmap f) ts)

Kinds are “types” of types and type constructors

* A specific type like Int or Int -> Char
* -> % A type constructor that given

a type creates a type, e.g. Maybe
* => Kk -> * A type constructor that given

two types creates a type, e.g. Either
-> Constraint A constructor of a type constraint
e.g. Num

*

data Either a b = Left a | Right b

GHCi command to display kinds is :k.

Handling errors in pure code

Failing computations

To define safe operations in Haskell, we can use
data Maybe a = Nothing | Just a

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead xs = Just (head xs)

safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (_:xs) = Just xs

Mapping over Maybe

addlToHead :: [Int] -> Int
add1ToHead = (+1) . head

The following fails because (+1) expects a numeric type not
Maybe Int.

add1ToHead :: [Int] -> Maybe Int
add1ToHead = (+1) . safeHead

Possible solution that does not scale:

add1lMaybe :: Maybe Int -> Maybe Int
add1iMaybe Nothing = Nothing
addiMaybe (Just n) = Just (n + 1)

Maybe as Functor

Instead we need a universal liftingofa -> b to
Maybe a -> Maybe b.

1lift :: (a -> b) -> Maybe a -> Maybe b
But this is just fmap from Functor

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f Just x = Just (f x)

safeAdd1ToHead :: [Int] -> Maybe Int
safeAdd1ToHead = fmap (+1) . safeHead

10

Composing failing computations

second :: [a] -> a
second = head . tail

This fails because safeHead expects [a] not Maybe [a].

safeSecond :: [a] -> Maybe a
safeSecond = safeHead . safeTail

This does not help either as the resulting type is
Maybe (Maybe a).

safeSecond :: [a] -> Maybe a
safeSecond = (fmap safeHead) . safeTail

n

Composing failing computations

safeSecond :: [a] -> Maybe a
safeSecond xs =
let xs' = safeTaill xs

in case xs' of
Nothing -> Nothing
Just xs'' -> safeHead xs''

This approach does not scale well.

12

safeFourth

safeFourth :: [a] -> Maybe a
safeFourth xs =
let xs' = safeTail xs
in case xs' of
Nothing -> Nothing
Just xs1 ->
let xs1' = safeTail xs1
in case xs1' of
Nothing -> Nothing
Just xs2 ->
let xs2' = safeTail xs2
in case xs2' of
Nothing -> Nothing
Just xs3 -> safeHead xs3

13

Composing failing computations

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b
andThen Nothing _ = Nothing
andThen (Just x) f = f x

safeSecond :: [a] -> Maybe a
safeSecond xs = safeTall xs “andThen safeHead

safeFourth :: [a] -> Maybe a
safeFourth xs =
safeTail xs “andThen’
safeTail "andThen”
safeTail "andThen”
safeHead

14

Error reporting is often done via
data Either a b = Left a | Right b
Either has two parameters so its kind is * -> * -> *,

safeDiv :: Int -> Int -> Either String Int
safeDiv _ 0 = Left "Division by 0 error"
safeDiv x y = Right (x “div" vy)

15

- A type class defines an interface for types.

- Functor is a type class for mappable type constructors.
- Maybe represents failing computations.

- Maybe is an instance of Functor.

- Composing of failing computation can be done by a
higher-order function of type
Maybe a -> (a -> Maybe b) -> Maybe b.

- Error reporting is done via Either.

JSON example

data JValue

JObject [

JString String

JINumber Double

JBool Bool

JNull

JObject [(String, JValue)]
JArray [Jvalue]

deriving (Eq, Show, Ord)

("id", IJNumber 103),
("name", JString "John"),

("courses",

JArray [JString "FUP", JString "ZUI"])

Type classes

Type classes allow us to implement ad hoc polymorphisms by
overloading function names.

class JSON a where
toJValue :: a -> JValue

instance JSON Double where
toJValue = JNumber

instance JSON Bool where
toJValue = JBool

But the following fails as String=[Char]:

instance JSON String where
toJValue = JString

Type class instances

Type class instances can be defined only for basic data types
or type constructors over type variables. To overcome that in
GHC, we must compile our file with the pragma

{-# LANGUAGE FlexibleInstances #-}

instance JSON String where
toJValue = JString

But the following is an overlapping instance with the above
instance as String=[Char]

instance JSON a => JSON [a] where
toJValue = JArray . map toJValue

This can be handled with pragmas {-# OVERLAPPING #-}

and {-# OVERLAPPABLE #-}
19

To overcome this issue we can introduce a wrapper
newtype Str = Str String deriving (Eq, Show, Ord)

newtype is like data with only single data constructor. Its
implementation is more efficient.

Then we change

data Jvalue = JString Str
I

instance JSON Str where
toJValue = JString

20

Case expression

Conditional expression allowing to control the evaluation
based on the value of an expression by pattern matching.

case expression of pattern -> result
pattern -> result
pattern -> result

describelist :: [a] -> String
describelist xs = "The 1list 1s "
++ case xs of
[-> "empty."
[_] -> "a singleton list."
_ -> "a longer list."

21

Case expression

The function definition via equations

f pl1l ... plk

el

f pnl ... pnk en

where each pij is a pattern, is semantically equivalent to:

f x1 x2 ... xk = case (x1, ... , xk) of
(p11, ..., p1k) -> el

(pn1, ..., pnk) -> en

22

	Pattern matching on records
	Type classes
	Type classes of parametric types
	Handling errors in pure code

