
Functional Programming
Lecture 8

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Haskell type system

Types

A type is a name for a set of related values (e.g., basic,
composed, functions, etc.). For example, in Haskell the basic
type

Bool denotes the 2-element set {True, False}.

Applying a function to an argument of incorrect type causes a
type error.

Prelude> :t 1 + False

<interactive>:1:1: error:
• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: 1 + False

1

Type systems

Typed languages are classified as

• Strongly-typed — expression types are fixed
• Weakly-typed — allow some automatic type coercions, e.g.
"5"+6
=> "56"
=> 11
printf("56" + 1) => "6"

• Statically-typed — types are checked during the compile
time

• Dynamically-typed — types are checked during run-time
(type-errors are run-time errors)

2

Function types

Function types

Function types are created by function type constructor ->. It
associates to the right, e.g.

mult :: Int -> Int -> Int -> Int
means Int -> (Int -> (Int -> Int))

Correspondingly, the function application associates to the
left, e.g.

mult x y z means ((mult x) y) z

Unless tupling is explicitly required, all functions in Haskell are
normally defined in curried form.

3

Lambda abstractions

Functions can be also defined by lambda abstractions. The
following definitions are equivalent.

f :: Int -> Int -> Int -> Int
f x y z = x + y * z

f x y = \z -> x + y * z

f x = \y -> (\z -> x + y * z)

f x = \y z -> x + y * z

f = \x -> (\y -> (\z -> x + y * z))

4

Partial application

f :: Int -> Int -> Int -> Int
f x y z = x + y * z

f 5 :: Int -> Int -> Int
f 5 4 :: Int -> Int

Partial applications of operators are called sections.

(2/) 1 => 2.0
(/2) 1 => 0.5
filter (>0) [-1,0,2,-3,1] => [2,1]

5

Polymorphisms

Polymorphisms

A function is called polymorphic if it applies to different types.
There are two kinds of polymorphisms:

• parametric — the same general function definition works
for different types

• ad hoc — assigning different function definitions to the
same name (overloading it)

6

Parametric polymorphisms

A parametric polymorphism is a function using a type variable
in its type declaration, e.g.

len :: [a] -> Int
len [] = 0
len (_:xs) = 1 + len xs

The type variable a can be instantiated into any type.

> len [True, False]
2
> len [1,2,3]
3

7

Examples of parametric polymorphisms

Many of the functions defined in the standard prelude are
polymorphic.

fst :: (a,b) -> a
snd :: (a,b) -> b
head :: [a] -> a
take :: Int -> [a] -> [a]
zip :: [a] -> [b] -> [(a,b)]
id :: a -> a

8

Type classes

Ad hoc polymorphisms are implemented via type classes.
A type class defines a set of functions that can have different
implementations depending on the types they are applied to.

E.g. we want to test equality == for many types:

1 == 1 => True
'a' == 'b' => False
[1,2] == [1,2] => True

Types testable on equality are instances of Eq class:

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

9

Examples of type classes

• Eq — types testable on equality
• Ord — linearly ordered types <,>,<=,>=,max,min
• Num — numeric types implementing
+,-,*,fromInteger,abs,negate,signum

• Fractional — as Num extended by division /
• Show — implements show :: a -> String

Types of polymorphic functions can contain one or more type
constraints, e.g.

(+) :: Num a => a -> a -> a
(==) :: Eq a => a -> a -> Bool
(<) :: Ord a => a -> a -> Bool
(>0) :: (Num a, Ord a) => a -> Bool

10

Type declarations

New names

In Haskell, a new name for an existing type can be defined
using a type declaration.

type String = [Char]

Type declarations make other types easier to read.

type Pos = (Int,Int)
left :: Pos -> Pos
left (x,y) = (x-1,y)

11

Parametric types

Like function definitions, type declarations can also have
parameters. With type Pair a = (a,a) we can define:

mult :: Pair Int -> Int
mult (m,n) = m*n

copy :: a -> Pair a
copy x = (x,x)

Type declarations can be nested

type Trans = Pos -> Pos

but not recursive!

12

Algebraic data types

Algebraic data types

To define a completely new type, use algebraic data types.

data Answer = Yes | No | Unknown

Answer is called type constructor.
Yes,No,Unknown are called data constructors.
Constructors have to start with a capital letter.

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

13

Parametric data constructors

The data constructors in a data declaration can have
parameters, e.g.

data Shape = Circle Float | Rect Float Float

Circle and Rect are functions that construct values of type
Shape.

square :: Float -> Shape
square n = Rect n n

New composed data types can be decomposed by pattern
matching

area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

14

Parametric type constructors

One of the most common Haskell types

data Maybe a = Nothing | Just a

allows defining safe operations.

safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] -> Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

15

Records

Purely positional data declarations are impractical with a large
number of fields. Therefore, the fields can be named:

data Person = Person { firstName :: String,
lastName :: String,

age :: Int,
phone :: String,

address :: String }

This allows to define records in arbitrary order

defaultPerson = Person {lastName="Smith",
firstName="John",...

And access fields using automatically generated functions, e.g.,

firstName :: Person -> String
16

Recursive types

Algebraic data types can be recursive.

data List a = Nil | Cons a (List a) deriving Show

List [1,2,3] can be represented as

Cons 1 (Cons 2 (Cons 3 Nil)) :: Num a => List a

rev :: List a -> List a
rev lst = iter lst Nil where

iter Nil acc = acc
iter (Cons x l) acc = iter l (Cons x acc)

17

Show instance

We can make List a our own instance of Show

data List a = Nil | Cons a (List a)

Suppose we wish to display our lists as <1, 2, 3>

instance Show a => Show (List a) where
show lst = "<" ++ disp lst ++ ">" where
disp Nil = ""
disp (Cons x Nil) = show x
disp (Cons x l) = show x ++ ", " ++ disp l

18

Arithmetic expressions

Arithmetic expressions can be represented as

data Expr a = Val a
| Add (Expr a) (Expr a)
| Mul (Expr a) (Expr a)

It is easy to evalute them

eval :: (Num a) => Expr a -> a
eval (Val x) = x
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y

19

Show instance

instance (Show a, Num a) => Show (Expr a) where
show (Val a) = show a
show (Add e1 e2) = "(" ++ show e1

++ " + "
++ show e2 ++ ")"

show (Mul e1 e2) = "(" ++ show e1
++ " * "
++ show e2 ++ ")"

20

Num instance

instance (Ord a, Num a) => Num (Expr a) where
x + y = Add x y
x - y = Add x (Mul (Val (-1)) y)
x * y = Mul x y
negate x = Mul (Val (-1)) x
abs x | eval x >= 0 = x

| otherwise = negate x
signum = Val . signum . eval
fromInteger x = Val (fromInteger x)

21

Homework assignment 3 - λ-calculus evaluator

Aim: To practice λ-calculus and algebraic data types in Haskell

type Symbol = String
data Expr = Var Symbol

| App Expr Expr
| Lambda Symbol Expr deriving Eq

Tricky point: fresh symbols in substitutions

Points: 12
Deadline: in 3 weeks (May 11)
Penalty: after deadline -1 points every day (at most -11)
Description: all details can be found in CW

22

What have we learned?

• Haskell is strongly-typed language, i.e., no automatic
coercion

• Haskell is statically-typed language, i.e., types are checked
in compilation time

• Function types, currying, lambda expressions, sections
• Parametric polymorphism - type variables
• Adhoc polymorphism - type classes
• Parametric types
• Algebraic data types
• Type class instances

23

	Haskell type system
	Function types
	Polymorphisms
	Type declarations
	Algebraic data types

