
Functional Programming
Lecture 7

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Haskell

Main properties

• Purely functional programming language
• necessary exceptions (IO) wrapped as monads

• Statically typed
• types are derived and checked at compile time
• types are automatically inferred
• have a crucial role in controlling flow of the program

• Lazy
• function arguments evaluated only when needed
• strict evaluation has to be forced syntactically

1

Haskell implementation

Glasgow Haskell Compiler (GHC)

• the leading implementation of Haskell
• comprises a compiler and interpreter
• written in Haskell, runtime system in C and C - -
• compatible with the latest standard Haskell 2010
• further provides a lot of extensions
• is freely available from:
https://www.haskell.org/ghcup/

2

https://www.haskell.org/ghcup/

Starting GHCi

The interpreter can be started from the terminal command
prompt by simply typing:

$ ghci

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help

Prelude>

The GHCi prompt > means that the interpreter is now ready to
evaluate an expression.

Prelude is a standard module imported by default.

3

Special commands

Commands to the interpreter start with :

• :? for help
• :load <filename>
• :reload
• :type <expr> displays the type of expr
• :info <name> displays info on a function or type
• :quit

Can be abbreviated to the first letter, e.g. :r

4

Haskell scripts

At the top level a Haskell program is a set of modules.

Each module consists of type and function declarations.

A module is defined within a script

• Text file comprising a sequence of definitions
• Usually have a .hs suffix
• Can be loaded by
$ ghci <filename>
> :load <filename>

5

Expressions

Every well-formed expression e has a well-formed type t,
written e :: t.

Given e for evaluation, GHCi follows the following steps:

1. checks that e is syntactically correct.
2. infers a type for e, or checks that the type supplied by the
programmer is correct.

3. evaluates e by reducing it to its simplest possible form to
produce a value.

4. Provided the value is printable, GHCi then prints it at the
terminal.

6

Basic syntax

Comments

-- Comment until the end of the line

{-
A long comment
over multiple
lines.

-}

7

Expressions

Expressions are built from

• literals representing constants of basic data types, e.g.
3.14

• variables
• functions (function calls use prefix notation), e.g.
cos 3.14

• operators (binary functions using infix notation), e.g.
3+5*8

Infix notation brings precedence and left/right associativity
stuff.

8

Basic types

Haskell has a number of basic types, including:

Bool logical values True, False
Char single characters 'a'
String strings of characters "abc"

Int fixed-precision integers
Integer arbitrary-precision integers
Float single-precision floating-point numbers

Double double-precision floating-point numbers

9

Function declarations

Function names must start with lower-case letter, e.g. myFun,
fun1, g_2, h'

We may declare a function type, e.g.,

factorial :: Integer -> Integer

A function is defined by means of equations, e.g.,

factorial 0 = 1
factorial n = n * factorial (n-1)

power :: Integer -> (Integer -> Integer)
power _ 0 = 1
power n k = n * power n (k-1)

10

Operators

Names of operators consist only of special symbols, e.g. +/+

Can be defined in infix notation:

x +/+ y = 2*x + y

A prefix function turns infix by ` ` and infix turns prefix by ()

`mod`, `elem`, (+), (+/+)

Precedence/asociativity of infix operators set by

infixr <0-9> <name>
infixl <0-9> <name>
infix <0-9> <name>

Information about associativity, precedence, and much else
> :info

11

Pattern matching

The first LHS that matches the function call is evaluated

True && True = True
_ && _ = False

More efficient definition:

True && b = b
False && _ = False

Patterns may not repeat variables, due to efficiency. The
following gives an error:

b && b = b
_ && _ = False

12

Let/where

discr :: Float -> Float -> Float -> Float
discr a b c =

let x = b*b
y = 4*a*c

in x - y

Alternatively

discr a b c = x - y
where x = b*b

y = 4*a*c

where cannot be used inside guarded equations unlike let

13

Layout rule

The layout rule avoids the need for explicit syntax to indicate
the grouping of definitions.

a = b + c where
b = 1
c = 2

means

a = b + c where {b=1; c=2}

14

Layout rule

Keywords (such as where, let, etc.) start a block:

• The first word after the keyword defines the pivot column.
• Lines exactly on the pivot define a new entry in the block.
• Start a line after the pivot to continue the previous lines.
• Start a line before the pivot to end the block.

15

Conditionals

abs n = if n >= 0 then n else -n

Conditional expressions can be nested:

signum n = if n < 0 then -1 else
if n == 0 then 0 else 1

There must always be an else branch.

Type of then-clause and else-clause must be the same.

(if True then 1 else "0")

throws a type error.

16

Guarded equations

As an alternative to conditionals, functions can also be defined
using guarded equations.

abs n | n >= 0 = n
| otherwise = -n

Definitions with multiple conditions are then easier to read:

signum n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

otherwise is defined in the prelude by otherwise = True

17

Lists

Lists are sequences of elements of the same type, e.g. [Int]

[1,2,3,4,5]
[1..10]
['a'..'z']
[1,3..]
[10,9..1]

• Built by “cons” operator :, ended by the empty list []
• Includes all basic functions
take, length, reverse, ++, head, tail

• In addition, you can index by !!
• Data type String is just [Char]

18

List patterns

Functions on lists can be defined using x:xs patterns

head (x:_) = x
tail (_:xs) = xs

We will see later it works similarly for other composite data
types. x:xs pattern mathes only non-empty lists:

> head [] => *** Exception: empty list

x:xs patterns must be parenthesised, because application
has priority over (:). The following definition gives an error:

head x:_ = x

A part of the pattern can be assigned a name

copyfirst s@(x:xs) = x:s -- same as x:x:xs
19

Tuples

Tuples are fixed-size sequences of elements of arbitrary types,
e.g. (Int, Char)

(1,2)
('a','b')
(1,2,'c',False)

Their element can be accessed by pattern matching

first (x,_,_) = x
second (_,x,_) = y
third (_,_,x) = x

Pattern matching can be nested

f :: (Int, [Char], (Int, Char)) -> [Char]
f (1, (x:xs), (2,y)) = x:y:xs

20

List comprehensions

In Haskell, there is a list comprehension notation to construct
new lists from existing lists.

[x^2 | x <- [1..5]]

x <- [1..5] is called a generator.

Comprehensions can have multiple generators behaving like
nested loops

> [(x,y) | x <- [1,2,3], y <- [4,5]]
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Generators can be infinite (almost everything is lazy)

[x^2 | x <- [1..]]

21

Dependent generator

Later generators can depend on the variables that are
introduced by earlier generators.

> [(x,y) | x <- [1..3], y <- [x..3]]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Using a dependent generator, we can define a function that
concatenates a list of lists:

flatten :: [[Int]] -> [Int]
flatten xss = [x | xs <- xss, x <- xs]

> flatten [[1,2],[3,4],[5]]
[1,2,3,4,5]

22

Guards

List comprehensions can use guards to restrict the values
produced by earlier generators.

[x | x <- [1..10], even x]

Using a guard we can define a function that maps a positive
integer to its list of factors:

factors :: Int -> [Int]
factors n = [x | x <- [1..n], mod n x == 0]}

A prime’s only factors are 1 and itself

prime :: Int -> Bool
prime n = factors n == [1,n]

List of all primes

[x | x <- [2..], prime x] 23

What have we learned?

• Haskell is a statically typed pure functional programming
language.

• It has a rich 2D syntax (layout rule).
• It has an automatic type inference mechanism.
• Every expression has a type.
• Lists store elements of the same type.
• Tuples have a fixed length but elements could be of
different types.

• List comprehension allows to define new list from another
lists.

24

	Haskell
	Basic syntax

