
Functional Programming
Lecture 7

Rostislav Horčík

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz

Lambda calculus

Acknowledgement

Lecture based on

Raúl Rojas : A Tutorial Introduction to the Lambda Calculus, FU
Berlin , WS 97/98. https://arxiv.org/abs/1503.09060

Link is also provided in CourseWare.

1

https://arxiv.org/abs/1503.09060

Untyped lambda calculus

A formalism introduce by Alonzo Church in 1930s.

The simplest universal programming language

• function definition scheme (λ-abstraction)
• variable substitution rule (α-conversion, β-reduction)

Introduced as a tool to prove that not all functions are
computable.

λ-calculus is Turing-complete.

It serves as a formal basis for functional programming
languages.

2

Syntax

Syntax

A program in λ-calculus is an expression

<expr> -> <var> | <function> | <application>
<function> -> (λ<var>.<expr>)
<application> -> (<expr> <expr>)

Conventions:

• We often leave the outermost parentheses.
• The application is left-associative, e.g. e1e2e3e4 is
(((e1e2)e3)e4)

• The bodies of functions extends to the right as far as
possible.

λx.(λy.xyx)z ≡
(
λx.

(
(λy.((xy)x))z

))
3

Abstract Syntax Tree

(λy.(λz.z))
(
(λx.(xv))(λx.(xx))

)
@

λy

λz

z

@

λx λx

@
@

x v
x x

4

Free and bound variables

A variable in an λ-expression is bound if it is under the scope
of λ and free otherwise.

Bound variable names can be renamed anytime by a fresh
variable, e.g.

λx.xz ≡ λy.yz

The renaming process is called α-conversion.

An expression is closed (aka combinator) if it has no free
variables; otherwise it is open.

5

Semantics

β-reduction

Lambda term (λx.t) represents a function with an argument x
and body t.

In Racket (lambda (x) t)

Function can by applied to another expression:

((λx.e1)e2) redex

It is applied by substituting the free occurrences of x in e1 by e2.

((λx.e1)e2) →β e1[x := e2]

6

Examples of β-reductions

(λx.x)(λy.y) →β x[x := (λy.y)] ≡ (λy.y)

(λx.xx)(λy.y) →β (xx)[x := (λy.y)]
≡ (λy.y)(λy.y) →β (λy.y)

(λx.x(λx.x))y →β (x(λx.x))[x := y] ≡ y(λx.x)

7

Name conflicts

Avoid name conflicts by renaming bound variables
(α-conversion)

1. Do not let a substituent become bound

(λx.(λy.xy))y 6→β (λy.yy)
(λx.(λy.xy))y ≡ (λx.(λz.xz))y →β (λz.yz)

2. Substitute only the free occurrences of argument

(λx.(λy.x(λx.xy)))z 6→β (λy.z(λx.zy))
(λx.(λy.x(λx.xy)))z →β (λy.z(λx.xy))

8

Evaluation strategies

Expression may contain several redexes (λx.x)(
redex︷ ︸︸ ︷

(λy.y)z)︸ ︷︷ ︸
redex

• Normal order: reduce leftmost outermost redex first
• Applicative order: reduce leftmost innermost redex first

Expression with no redex is in normal form.

Reduction process need not terminate!

(λx.xx)(λx.xx) →β (λx.xx)(λx.xx)

Church-Rosser Theorems

1. Normal forms are unique (independently of eval. strategy).
2. Normal order always finds a normal form if it exists.

9

Leftmost outermost vs leftmost innermost redex

We say a redex is to the left of another redex if its lambda
appears further left.

The leftmost outermost redex is the leftmost redex not
contained in any other redex.

The leftmost innermost redex is the leftmost redex not
containing any other redex.

10

Leftmost outermost vs leftmost innermost redex

(λy.y)((λz.zz)x)
(
(λz.(λa.a)z)(λy.(λz.z)x)

)
@

@ @

λy

y

@

xλz

@

z z

λz λy

@ @

zλa

a

xλz

z

left.-outer.

left.-inner.

11

Building Booleans, arithmetic,
recursion, etc. in λ-calculus

No function names

Functions in λ-calculus do not have names.

We apply a function by writing its whole definition.

We use capital letters and symbols to abbreviate the
definitions. These abbreviations are not a part of λ-calculus.

E.g. the identity function is usually abbreviated by I

I ≡ (λx.x)

Combinators are the building blocks.

12

Boolean values

Lambda term of the form λx.(λy.e) is is abbreviated λxy.e.

T ≡ λxy.x
F ≡ λxy.y

The T and F functions directly serve as the if-statement

Tab→β a
Fab→β b

13

Logical operations

Conjunction:

∧ ≡ λxy.xyF ≡
(
λx

(
λy.((xy)(λuv.v))

))
Disjunction:

∨ ≡ λxy.xTy ≡ λxy.x(λuv.u)y

Negation:
¬ ≡ λx.xFT ≡ λx.x(λuv.v)(λab.a)

∧FT ≡ (λxy.xyF)FT →β FTF →β F

∧TT ≡ (λxy.xyF)TT →β TTF →β T

14

Natural numbers

Natural numbers are represented as functions of two variables
s, z so that n is represented as n-fold application of s to z.

0 ≡ λsz.z ≡ F
1 ≡ λsz.sz
2 ≡ λsz.s(sz)
3 ≡ λsz.s(s(sz))
...

15

Successor function

Increment a number by one

S ≡ λwyx.y(wyx)

E.g.

S1 ≡ (λwyx.y(wyx))(λsz.sz)
→β λyx.y((λsz.sz)yx)
→β λyx.y(yx) ≡ 2

16

Addition

x + y is applying the successor x times to y

Meaning of number N is just ”apply the first argument N times
to the second argument”

N ≡ λsz. s(s . . . (s︸ ︷︷ ︸
N times

z) . . .)

Therefore 2+ 3 is just:

2S3 ≡ (λsz.s(sz))S3→β S(S3) →β 5

17

Multiplication

We can multiply two numbers using

M ≡ λabc.a(bc)

Note

Nc ≡ (λsz. s(s . . . (s︸ ︷︷ ︸
N times

z) . . .))c →β λz. c(c . . . (c︸ ︷︷ ︸
N times

z) . . .)

M23 ≡ (λabc.a(bc))23→β λc.2(3c)
→β λc.(λz.(3c)((3c)z)) ≡ λcz.(3c)((3c)z)
→β λcz.(3c)(c(c(cz))) →β λcz.c(c(c(c(c(cz))))) ≡ 6

18

Conditional tests

Test if a given number is the 0

Z ≡ λx.xF¬F

Z0 ≡ (λx.xF¬F)0→β 0F¬F →β ¬F →β T

For N > 0

ZN ≡ (λx.xF¬F)N→β NF¬F
→β (F . . . (F︸ ︷︷ ︸

N times

¬) . . .)F →β IF →β F

because
Fe ≡ (λab.b)e→β λb.b ≡ I

19

Pairs

The pair 〈a,b〉 can be represented as

〈a,b〉 ≡ λz.zab

We can extract the first element of the pair by

(λz.zab)T →β a

and the second element by

(λz.zab)F →β b

20

Predecessor

We want to create a function, which applied N times to
something returns N− 1.

This function modifies a pair 〈x, y〉 to 〈x + 1, x〉

Φ ≡ λpz.z(S(pT))(pT)

Calling N times Φ on 〈0, 0〉 yields 〈N,N− 1〉.

Φ〈0, 0〉 →β 〈1, 0〉, Φ〈1, 0〉 →β 〈2, 1〉, . . .

Finally, we take the second number in the pair. The
predecessor function is

P ≡ λn.nΦ〈0, 0〉F

Note than the predecessor of 0 is 0.

21

Y-combinator

Can we create recursion without function names?

Y ≡ λy.(λx.y(xx))(λx.y(xx))

Now apply Y to some other function R

YR→β (λx.R(xx))(λx.R(xx)) ≡ R̃
→β R((λx.R(xx))(λx.R(xx))) ≡ RR̃
→β R(R((λx.R(xx))(λx.R(xx)))) ≡ R(RR̃)
→β . . .

R̃→β RR̃

22

Recursive functions

We can recursively sum up first n integers as

n∑
i=0

i = n+
n−1∑
i=0

i

In Racket

(define (sum-to n)
(if (= n 0) 0
(+ n (sum-to (- n 1))))

A corresponding recursive function is

R ≡ λrn.Zn0(nS(r(Pn)))

23

Recursive functions

R ≡ λrn.Zn0(nS(r(Pn)))

YR3→β R̃3→β RR̃3 ≡ Z30(3S(R̃(P3)))
→β F0(3S(R̃(P3))) →β 3S(R̃(P3))
→β 3S(R̃2) →β 3S(RR̃2)
→β 3S(Z20(2S(R̃(P2)))) →β 3S(2S(R̃1))
→β 3S(2S(RR̃1)) →β 3S(2S(1S(R̃0)))
→β 3S(2S(1S(RR̃0))) ≡ 3S(2S(1S(Z00(0S(R̃(P0))))))
→β 3S(2S(1S0)) →β 6

24

What have we learned?

• λ-calculus is the formal basis for functional programming
language.

• It is the simplest universal programming language.
• It uses only λ-abstraction and application.
• Within λ-calculus it is possible to build up numbers,
arithmetic, etc.

• Recursion is done via Y-combinator.

25

	Lambda calculus
	Syntax
	Semantics
	Building Booleans, arithmetic, recursion, etc. in -calculus

