
Functional Programming
Lecture 5

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Syntax macros

Syntax macros

Racket macro system is a powerful tool allowing to extend
syntax. It operates on AST not source code.

1

Example

(define-syntax macro-if
(syntax-rules ()
[(macro-if c a b)
(my-lazy-if c (thunk a) (thunk b))]))

(macro-if (null? '()) '() (car '()))

2

List comprehension

[x+2 for x in [2,3,5] if 3 >= x]

(define-syntax list-comp
(syntax-rules (: <- if)
[(list-comp <expr> : <id> <- <lst>)
(map (lambda (<id>) <expr>) <lst>)]

[(list-comp <expr> : <id> <- <lst> if <cond>)
(map (lambda (<id>) <expr>)

(filter (lambda (<id>) <cond>) <lst>))]))

(list-comp (+ x 2) : x <- '(2 3 5) if (>= 3 x))

3

Interpreters

Programming languages and interpreters

Programming language

Syntax Semantics

Grammar Computational meaning

Parser Evaluator outputsource
code

AST

To implement an interpreter of a LISP-like language in
Scheme/Racket no parser is needed. We can use the built-in
parser.

4

Brainf*ck syntax

A program to add two numbers:

,>,[-<+>]<.

5

Brainf*ck syntax

Brainf*ck is a minimalistic language defining computations
over a fixed-size tape of numbers.

<program> -> <term>*
<term> -> <cmd> | <cycle>
<cycle> -> [<program>]
<cmd> -> + | - | < | > | . | ,

Example of a syntactically correct Brainf*ck program:
,>,[-<+>]<.

6

Brainf*ck semantics

State of computation is captured by a fixed-size tape of
numbers initialized by 0s.

a1 a2 a3 · · · a4 a5 a6

pointer

+ - increase/decrease focused number
< > move pointer left/right
. , output/input focused number
[] while focused number isn’t 0, execute inner code

7

Brainf*ck interpreter in Racket

We represent Brainf*ck programs as lists of symbols.

Cycles form nested lists.

Symbols . and , are replaced by * and @ respectively.

(define add-prg '(@ > @ [- < + >] < *))

Tape is represented by a mutable vector of numbers.

(run-prg add-prg '(12 34))

displays 46 done.

8

Homework assignment 2 - SVGen interpreter

Aim: Try to implement a simple interpreter

SVGen is a simple programming language for generating SVG
images.

Points: 15
Deadline: in 3 weeks (April 8th)
Penalty: after deadline -1 points every day (at most -14)
Description: all details can be found in CW
The use of buit-in function eval is not allowed!
Make your code pure!

9

SVGen example

(define test2
'((define STYLE "fill:white;stroke:green;stroke-width:3")

(define (circles x r)
(when (> r 10)

(circle x 200 r STYLE)
(circles (+ x (floor (/ r 2))) (floor (/ r 2)))))))

(execute 400 400 test2 '(circles 200 200))

10

Handling function calls

During the evaluation, one must maintain an environment — a
data structure consisting of two parts:

1. a structure containing definitions
2. and variable bindings.

To evaluate (fn exp1 exp2 ...), do

1. Eval numeric expressions exp1,exp2,... obtaining
val1,val2,...

2. Create a new environment containing variable bindings for
arguments of fn using values val1,val2,...

3. Evaluate the sequence of expressions in the body of fn

11

What have we learned?

• Syntax can be extended by macros operating on AST.
• Programming language is determined by its syntax and
semantics.

• Using syntax, interpreter parses source code into Abstract
Syntax Tree

• and then evaluates/executes the program based on
semantics.

12

	Syntax macros
	Interpreters

