
Functional Programming
Lecture 4

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz



Pattern matching



Pattern matching

Pattern matching allows deconstructing a data structure and
based on its components to branch the computation.

(match exp
[pattern1 exp1]
[pattern2 exp2]
...)

Similar to cond matching the expression exp against the
patterns.

The patterns might include variables. If a pattern matches exp,
its variables are bound to the corresponding values in exp.

1



Matching literals and predicates

(struct point (x y))

(match exp
[0 'zero]
[1 'one]
[2 'two]
["abc" 'abc]
[(point 0 0) 'point]
[(? string?) 'string]
[(and (? number? x) (? positive?))
(format "positive num ~a" x)]

[_ 'other])

2



Matching lists

(match lst
[(list) 'empty]
[(list x) (format "singleton (~a)" x)]
[(list 'fn ys ...)
(format "fn and rest ~a" ys)]

[(list (list 'fn args ...) ys ...)
(format "fn with ~a and rest ~a" args ys)]

[(list 1 ys ... z)
(format "1, rest ~a and last ~a" ys z)]

[(list x ys ...)
(format "~a and rest ~a" x ys)]

[_ 'other])

3



Lazy evaluation



Postponing evaluation

Scheme/Racket uses almost always applicative/strict evalution
order, i.e. before evaluating (fn a1 a2 ...) it evaluates all
subexpressions fn, a1, ... from left to right.

Exceptions are syntactic forms like if,cond,and,or:

(if (< 0 1) 0 (/ 1 0)) => 0

Can we force the interpreter to postpone the argument
evaluations?

(define (my-if c a b) (if c a b))
(my-if (< 0 1) 0 (/ 1 0)) => /: division by zero

4



Thunk

Defining a function creates a closure but its body is not
evaluated.

(my-if (< 0 1)
(lambda () 0)
(lambda () (/ 1 0))) => #<procedure>

(define (my-lazy-if c a b) (if c (a) (b)))

(lambda () exp) = (thunk exp)

(my-lazy-if (< 0 1)
(thunk 0) (thunk (/ 1 0))) => 0

5



Applications of thunks

• Special forms like if, cond, and, or

• Passing an expression to be evaluated later, e.g.
(thread (thunk exp))

• Programs can use potentially large or infinite data
structures, e.g. streams. This can make the code more
efficient or improve its modularity.

6



Streams



Streams

Streams are ordered sequences of elements that are evaluated
when needed (lazily), can be infinite.

(delay exp) ; called a promise, similar as thunk

(force exp) ; similar as (exp)

Moreover, force caches the result of (exp) so exp is not
evaluated again by repeated forcing.

(define (ints-from n)
(cons n (delay (ints-from (+ n 1)))))

(define nats (ints-from 0))
(force (cdr nats)) => (1 . #<promise:...

7



Functions for streams

Functions creating and manipulating streams are implemented
in Racket (not Scheme)

streams lists
stream-cons cons
stream list
stream-first car
stream-rest cdr
stream-empty? null?
stream-filter filter
stream-map map
stream-take take

Any list can be used as a stream. Finite stream can be
converted to a list by stream->list.

8



Streams defined explicitly

We can specify a stream by defining a generating function
computing a next element from previous ones.

(define (nats n)
(stream-cons n (nats (+ n 1))))

We can construct an infinite stream for any function f
computing the next element from the current one:

(define (repeat f a0)
(stream-cons a0 (repeat f (f a0))))

9



Streams defined implicitly

The stream of ones: 1 = 1, 1.

(define ones (stream-cons 1 ones))

The stream of a,b,a,b,a, . . . : ab = a,b,ab.

(define ab (stream-cons 'a (stream-cons 'b ab)))

(define stream-days
(stream* 'mon 'tue 'wed

'thu 'fri 'sat 'sun
stream-days))

10



Streams defined implicitly

stream-map works only for a single stream.

(define (add-streams s1 s2)
(stream-cons (+ (stream-first s1)

(stream-first s2))
(add-streams (stream-rest s1)

(stream-rest s2))))

N = 0, 1+ N
1 1 1 1 1

+ 0 1 2 3 4
0 1 2 3 4 5

(define nats2
(stream-cons 0 (add-streams ones nats2)))

11



Applications of streams

Streams are useful when we need a somethink like a Python’s
iterator. Compare

(stream-fold + 0 (in-range 10000000))
(foldl + 0 (range 10000000))

Lazily evaluated data structure provide better modularity
because we can separate generating code from further
processing functions like pruning or searching.

Generate Prune Search

12



Newton-Raphson

n 7→
√
n

g0 – an initial guess

gk+1 = 1
2 (gk + n/gk) — the next guess

When gk = gk+1 = 1
2 (gk + n/gk), we have

2gk = gk + n/gk
gk = n/gk
gk =

√
n

In practice, we test |1− gk
gk+1

| ≤ ε

13



Lazy tree

14



What have we learned?

• Pattern matching allows simultaneous computation
branching and data structure deconstruction.

• We can control the evaluation order by delaying the
evaluation.

• Streams are lazy lists which can be even infinite.
• Lazily evaluated structures provide better modularity.

15


	Pattern matching
	Lazy evaluation
	Streams

