Functional Programming
Lecture 4

Rostislav Horcik
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Pattern matching

Pattern matching

Pattern matching allows deconstructing a data structure and
based on its components to branch the computation.

(match exp
[patternl expl]
[pattern2 exp2]

.)

Similar to cond matching the expression exp against the
patterns.

The patterns might include variables. If a pattern matches exp,
its variables are bound to the corresponding values in exp.

Matching literals and predicates

(struct point (x y))

(match exp

[0 'zero]
[1 'one]
[2 "two]
["abc" 'abc]

[(point 0 0) 'point]

[(? string?) 'string]

[(and (? number? x) (? positive?))
(format "positive num ~a" x)]

[_ 'other])

Matching lists

(match 1st
[(list) 'empty]
[(list x) (format "singleton (~a)" x)]
[(list '"fn ys ...)
(format "fn and rest ~a" ys)]
[(list (list 'fn args ...) ys ...)
(format "fn with ~a and rest ~a" args ys)]
[(list 1 ys ... z)
(format "1, rest ~a and last ~a" ys z)]
[(list x ys ...)
(format "~a and rest ~a" x ys)]
[_ 'other])

Lazy evaluation

Postponing evaluation

Scheme/Racket uses almost always applicative/strict evalution
order, i.e. before evaluating (fn a1l a2 ...) it evaluates all
subexpressions fn, al, ... from left to right.

Exceptions are syntactic forms like if,cond,and, or:

(if (<0 1)0 (/10)) =>0

Can we force the interpreter to postpone the argument
evaluations?

(define (my-if c a b) (if c a b))
(my-if (¢ @ 1) 0 (/ 1 0)) => /: division by zero

Defining a function creates a closure but its body is not
evaluated.

(my-if (< 0 1)
(lambda () 0)
(lambda () (/ 1 0))) => #i<procedure>

(define (my-lazy-if c a b) (if c (a) (b)))
(lambda () exp) = (thunk exp)

(my-lazy-if (< 0 1)
(thunk 0) (thunk (/ 1 0))) => 0

Applications of thunks

- Special forms like 1f, cond, and, or

- Passing an expression to be evaluated later, e.g.
(thread (thunk exp))

- Programs can use potentially large or infinite data
structures, e.g. streams. This can make the code more
efficient or improve its modularity.

Streams

Streams are ordered sequences of elements that are evaluated
when needed (lazily), can be infinite.

(delay exp) ; called a promise, similar as thunk
(force exp) ; similar as (exp)

Moreover, force caches the result of (exp) so exp is not
evaluated again by repeated forcing.

(define (ints-from n)

(cons n (delay (ints-from (+ n 1)))))

(define nats (ints-from 0))
(force (cdr nats)) => (1 . #i<promise:...

Functions for streams

Functions creating and manipulating streams are implemented
in Racket (not Scheme)

streams lists
stream-cons cons
stream list
stream-first car
stream-rest cdr

stream-empty? | null?
stream-filter | filter
stream-map map
stream-take take

Any list can be used as a stream. Finite stream can be
converted to a list by stream->11ist.

Streams defined explicitly

We can specify a stream by defining a generating function
computing a next element from previous ones.

(define (nats n)
(stream-cons n (nats (+ n 1))))

We can construct an infinite stream for any function f
computing the next element from the current one:

(define (repeat f a0)
(stream-cons a0 (repeat f (f a0))))

Streams defined implicitly

The stream of ones: 1=1,1.

(define ones (stream-cons 1 ones))

The stream of a, b, a,b,a,...: ab=a, b, ab.

(define ab (stream-cons 'a (stream-cons 'b ab)))

(define stream-days
(stream* 'mon 'tue 'wed
"thu 'fri 'sat 'sun

stream-days))

10

Streams defined implicitly

stream-map works only for a single stream.

(define (add-streams si1 s2)
(stream-cons (+ (stream-first s1)
(stream-first s2))
(add-streams (stream-rest sl1)
(stream-rest s2))))

1 1 1 1 1
N=0,T+N + 0 1 2 3 4
0 1 2 3 4 5

(define nats2
(stream-cons 0 (add-streams ones nats2)))

n

Applications of streams

Streams are useful when we need a somethink like a Python's
iterator. Compare

(stream-fold + 0 (in-range 10000000))
(foldl + 0 (range 10000000))

Lazily evaluated data structure provide better modularity
because we can separate generating code from further
processing functions like pruning or searching.

Generate — Prune —— Search

12

Newton-Raphson

n—+/n

go — an initial guess

ki1 = 2 (gr + N/gr) — the next guess
When g, = g1 = 5 (g + n/9gk), we have

29, = gr + n/9gy,
gr =n/gr
gr=+vn

In practice, we test |1 — 2| < ¢
Gk41

13

14

What have we learned?

- Pattern matching allows simultaneous computation
branching and data structure deconstruction.

- We can control the evaluation order by delaying the
evaluation.
- Streams are lazy lists which can be even infinite.

- Lazily evaluated structures provide better modularity.

15

	Pattern matching
	Lazy evaluation
	Streams

