
Functional Programming
Lecture 3

Rostislav Horčík

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz



Higher-order functions



1



Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

• Allow capturing and reusing common programming
patterns

• Provide higher level of abstraction
• The reason why functional programs are compact

2



Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

• Allow capturing and reusing common programming
patterns

• Provide higher level of abstraction
• The reason why functional programs are compact

2



Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

• Allow capturing and reusing common programming
patterns

• Provide higher level of abstraction

• The reason why functional programs are compact

2



Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

• Allow capturing and reusing common programming
patterns

• Provide higher level of abstraction
• The reason why functional programs are compact

2



Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '(1 2 3)) does not work

(apply fn arg1 ... argN lst)

(apply + '(1 2 3)) => 6
(apply + -3 2 '(1 2 3)) => 5

(apply append '((1 2 3) (a b))) => (1 2 3 a b)

3



Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '(1 2 3)) does not work

(apply fn arg1 ... argN lst)

(apply + '(1 2 3)) => 6
(apply + -3 2 '(1 2 3)) => 5

(apply append '((1 2 3) (a b))) => (1 2 3 a b)

3



Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '(1 2 3)) does not work

(apply fn arg1 ... argN lst)

(apply + '(1 2 3)) => 6
(apply + -3 2 '(1 2 3)) => 5

(apply append '((1 2 3) (a b))) => (1 2 3 a b)

3



Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '(1 2 3)) does not work

(apply fn arg1 ... argN lst)

(apply + '(1 2 3)) => 6
(apply + -3 2 '(1 2 3)) => 5

(apply append '((1 2 3) (a b))) => (1 2 3 a b)

3



Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '(1 2 3)) does not work

(apply fn arg1 ... argN lst)

(apply + '(1 2 3)) => 6
(apply + -3 2 '(1 2 3)) => 5

(apply append '((1 2 3) (a b))) => (1 2 3 a b)

3



Higher-order functions for lists



Higher-order functions for lists

• filter — filter elements of a list w.r.t. a predicate

• map — apply a function element-wise to a list/lists
• foldr — aggregate elements in a list using a binary
operation from right to left

• foldl — aggregate elements in a list using a binary
operation from left to right

4



Higher-order functions for lists

• filter — filter elements of a list w.r.t. a predicate
• map — apply a function element-wise to a list/lists

• foldr — aggregate elements in a list using a binary
operation from right to left

• foldl — aggregate elements in a list using a binary
operation from left to right

4



Higher-order functions for lists

• filter — filter elements of a list w.r.t. a predicate
• map — apply a function element-wise to a list/lists
• foldr — aggregate elements in a list using a binary
operation from right to left

• foldl — aggregate elements in a list using a binary
operation from left to right

4



Higher-order functions for lists

• filter — filter elements of a list w.r.t. a predicate
• map — apply a function element-wise to a list/lists
• foldr — aggregate elements in a list using a binary
operation from right to left

• foldl — aggregate elements in a list using a binary
operation from left to right

4



Map

(map fn '(a1 a2 ...)
'(b1 b2 ...)
'(c1 c2 ...))

=> ((fn a1 b1 c1) (fn a2 b2 c2) ...)

(map (lambda (x) (* 2 x)) '(1 2 3)) => (2 4 6)

(map list-ref '((1 2 3)
(4 5 6)
(7 8 9)) (range 0 3)) => (1 5 9)

5



Map

(map fn '(a1 a2 ...)
'(b1 b2 ...)
'(c1 c2 ...))

=> ((fn a1 b1 c1) (fn a2 b2 c2) ...)

(map (lambda (x) (* 2 x)) '(1 2 3)) => (2 4 6)

(map list-ref '((1 2 3)
(4 5 6)
(7 8 9)) (range 0 3)) => (1 5 9)

5



Map

(map fn '(a1 a2 ...)
'(b1 b2 ...)
'(c1 c2 ...))

=> ((fn a1 b1 c1) (fn a2 b2 c2) ...)

(map (lambda (x) (* 2 x)) '(1 2 3)) => (2 4 6)

(map list-ref '((1 2 3)
(4 5 6)
(7 8 9)) (range 0 3)) => (1 5 9)

5



Folding

Let f : A× B→ B be a binary function and b0 ∈ B.

Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))

foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

Let f : A× B→ B be a binary function and b0 ∈ B. Given a list
~a = (a1,a2,a3,a4) of values from A, define

foldl(f ,b0, ~a) = f (a4, f (a3, f (a2, f (a1,b0))))
foldr(f ,b0, ~a) = f (a1, f (a2, f (a3, f (a4,b0))))

foldl(+, 0, (1, 2, 3)) = 3+ (2+ (1+ 0)) = 6
foldr(+, 0, (1, 2, 3)) = 1+ (2+ (3+ 0)) = 6

b0 b1 b2 b3 b4
f (a1,b0) f (a2,b1) f (a3,b2) f (a4,b3)

foldl

b0 b1 b2 b3 b4
f (a4,b0) f (a3,b1) f (a2,b2) f (a1,b3)

foldr

6



Folding

(define (trace mat)
(foldl + 0 (map list-ref

mat
(range 0 (length mat)))))

(trace '((1 2 3) (4 5 6) (7 8 9))) => 15

(foldl cons '() '(a b c)) => (c b a)
(foldr cons '() '(a b c)) => (a b c)
(foldl min +inf.0 '(0 -3 2)) => -3.0

7



Folding

(define (trace mat)
(foldl + 0 (map list-ref

mat
(range 0 (length mat)))))

(trace '((1 2 3) (4 5 6) (7 8 9))) => 15

(foldl cons '() '(a b c)) => (c b a)
(foldr cons '() '(a b c)) => (a b c)
(foldl min +inf.0 '(0 -3 2)) => -3.0

7



Currying and compositions



Partial evaluation — Currying

−2 0 2 −2
0

20

10

8



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Partial evaluation — Currying

f : A× B→ C =⇒ f̂ : A→ (B→ C)
f : A× B× C → D =⇒ f̂ : A→ (B→ (C → D))

(list-ref '(a b c) 2) => c

(define (curried-list-ref lst)
(lambda (i) (list-ref lst i)))

((curried-list-ref '(a b c)) 2) => c

(((curry list-ref) '(a b c)) 2) => c

Simplified syntax:

((curry list-ref '(a b c)) 2) => c
(map (curry * 2) '(1 2 3)) => (2 4 6)

9



Function composition

Let f : A→ B and g : B→ C be functions.

The function composition (g ◦ f ) : A→ C is defined as

(g ◦ f )(x) = g(f (x))

A B C
f g

g ◦ f

D
h

h ◦ g ◦ f

10



Function composition

Let f : A→ B and g : B→ C be functions.

The function composition (g ◦ f ) : A→ C is defined as

(g ◦ f )(x) = g(f (x))

A B C
f g

g ◦ f

D
h

h ◦ g ◦ f

10



Function composition

Let f : A→ B and g : B→ C be functions.

The function composition (g ◦ f ) : A→ C is defined as

(g ◦ f )(x) = g(f (x))

A B C
f g

g ◦ f

D
h

h ◦ g ◦ f

10



Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?

(string->list str))))

Point-free style:

(define str->alpha2
(compose list->string

(curry filter char-alphabetic?)
string->list))

11



Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?

(string->list str))))

Point-free style:

(define str->alpha2
(compose list->string

(curry filter char-alphabetic?)
string->list))

11



Example — morphic sequences

Let φ : {0, 1} → {0, 1}∗ such that φ(0) = 011, φ(1) = 0.

φ(10110) = 001100011

Define sequence:

φ0(0) = 0
φ1(0) = h(0) = 011
φ2(0) = h(011) = 01100
φ3(0) = h(01100) = 01100011011

...

12



Example — morphic sequences

Let φ : {0, 1} → {0, 1}∗ such that φ(0) = 011, φ(1) = 0.

φ(10110) = 001100011

Define sequence:

φ0(0) = 0
φ1(0) = h(0) = 011
φ2(0) = h(011) = 01100
φ3(0) = h(01100) = 01100011011

...

12



Example — morphic sequences

Let φ : {0, 1} → {0, 1}∗ such that φ(0) = 011, φ(1) = 0.

φ(10110) = 001100011

Define sequence:

φ0(0) = 0
φ1(0) = h(0) = 011
φ2(0) = h(011) = 01100
φ3(0) = h(01100) = 01100011011

...

12



Closures



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; u is a free variable

(fn 5) ; => 6 = 5 + 1

(let ([u -1])
(fn 5))

=> 6

13



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; u is a free variable

(fn 5) ; => 6 = 5 + 1

(let ([u -1])
(fn 5))

=> 6

13



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; u is a free variable

(fn 5) ; => 6 = 5 + 1

(let ([u -1])
(fn 5))

=> 6

13



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; u is a free variable

(fn 5) ; => 6 = 5 + 1

(let ([u -1])
(fn 5))

=> 6

13



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; u is a free variable

(fn 5) ; => 6 = 5 + 1

(let ([u -1])
(fn 5))

=> 6

13



Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

• Lexical scope — functions use bindings available where
defined

• Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14



Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

• Lexical scope — functions use bindings available where
defined

• Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14



Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

• Lexical scope — functions use bindings available where
defined

• Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14



Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

• Lexical scope — functions use bindings available where
defined

• Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14



Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adder1 (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

adder1 -> (lambda (y) (+ 10 y))
adder2 -> (lambda (y) (+ 3 y))
adder3 -> (lambda (y) (+ -7 y))

adder1 -> (x 10) (lambda (y) (+ x y))
adder2 -> (x 3) (lambda (y) (+ x y))
adder3 -> (x -7) (lambda (y) (+ x y))

15



Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adder1 (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

adder1 -> (lambda (y) (+ 10 y))
adder2 -> (lambda (y) (+ 3 y))
adder3 -> (lambda (y) (+ -7 y))

adder1 -> (x 10) (lambda (y) (+ x y))
adder2 -> (x 3) (lambda (y) (+ x y))
adder3 -> (x -7) (lambda (y) (+ x y))

15



Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adder1 (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

adder1 -> (lambda (y) (+ 10 y))
adder2 -> (lambda (y) (+ 3 y))
adder3 -> (lambda (y) (+ -7 y))

adder1 -> (x 10) (lambda (y) (+ x y))
adder2 -> (x 3) (lambda (y) (+ x y))
adder3 -> (x -7) (lambda (y) (+ x y))

15



Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

• code of the function
• environment where the function was defined

A function call expression:

• Evaluates the code of a function closure
• In the environment of the function closure extended by
with bindings for the arguments

16



Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

• code of the function
• environment where the function was defined

A function call expression:

• Evaluates the code of a function closure
• In the environment of the function closure extended by
with bindings for the arguments

16



Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

• code of the function
• environment where the function was defined

A function call expression:

• Evaluates the code of a function closure
• In the environment of the function closure extended by
with bindings for the arguments

16



Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

17



Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

17



Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

17



Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

17



Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

17



Structures

Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
"Down"
33)) ; defines instance

Accessor functions to all fields are automatically defined.

(person-first-name pers) => "John"
(person-surname pers) => "Down"
(person-age pers) => 33
(person? pers) => #t
(person? "John") => #f

18



Structures

Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
"Down"
33)) ; defines instance

Accessor functions to all fields are automatically defined.

(person-first-name pers) => "John"
(person-surname pers) => "Down"
(person-age pers) => 33
(person? pers) => #t
(person? "John") => #f

18



Structures

Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
"Down"
33)) ; defines instance

Accessor functions to all fields are automatically defined.

(person-first-name pers) => "John"
(person-surname pers) => "Down"
(person-age pers) => 33
(person? pers) => #t
(person? "John") => #f

18



Homework assignment



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10

Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)

Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)

Description: all details can be found in CW

19



Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

;;;::::,,,,...
o;;;;::::,,,....
ooo;;;;:::,,,,....
xoooo;;;::::,,,....
xxoooo;;;;:::,,,,...
xxxxoooo;;;::::,,,,.
%%xxxxooo;;;;::::,,,
%%%%xxxoooo;;;;:::,,
##%%%xxxxoooo;;;::::
###%%%%xxxoooo;;;;::
@####%%%xxxxoooo;;;:
@@@###%%%%xxxxooo;;;

ascii-art

. , : ; o x \%\# @

Points: 10
Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.

• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.

• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.

• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.

• Function closures are pairs storing the code of a function
together with the current environment.

20



What have we learned?

• Higher-order functions have functional arguments or
returns a function or both.

• apply allows to apply a function to arguments enclosed
in a list.

• map applies a function to lists elementwise.
• foldl, foldr aggregate values in a list by a given
function.

• curry transforms a function into its currified form.
• compose performs functional composition.
• Scheme/Racket uses lexical scope.
• Function closures are pairs storing the code of a function
together with the current environment.

20


	Higher-order functions
	Higher-order functions for lists
	Currying and compositions
	Closures
	Homework assignment

