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Higher-order functions



WHAT IF I TOLD YOU

YOU CAN PASS A
FUNCTION TO FUNCTION G seant
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Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.
- Allow capturing and reusing common programming
patterns
- Provide higher level of abstraction

- The reason why functional programs are compact
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Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ "(1 2 3)) does not work
(apply fn argl ... argN 1lst)

(apply + '(1 2 3)) =>6
(apply + -3 2 '(1 2 3))

> 5

(apply append '((1 2 3) (a b))) => (12 3 ab)
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Higher-order functions for lists

- filter — filter elements of a list w.rt. a predicate
- map — apply a function element-wise to a list/lists

- foldr — aggregate elements in a list using a binary
operation from right to left

- foldl — aggregate elements in a list using a binary
operation from left to right



(map fn '(a1l
"(b1

"(c1

=> ((fn

a2 ...)
b2 ...)
c2 ...))
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(map

(map

fn '(a1
"(bl
"(c1
=> ((fn

(lambda

a2 ...)
b2 ...)
c2 ...))
al bl c1) (fn a2 b2 ¢c2) ...)

(x) (+ 2 x)) '"(123)) =>(246)



(map fn '(al1 a2 ...)
"(b1 b2 ...)
(¢l c2 ...))

=> ((fn a1 bl c1) (fn a2 b2 ¢c2) ...)

(map (lambda (x) (* 2 x)) '"(1 2 3)) => (2 4 6)

(map list-ref '((1 2 3)
(4 5 6)
(7 8 9)) (range 0 3)) => (1 5 9)
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Letf: Ax B— Bbeabinary function and by € B. Given a list
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Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(as,f(as,f(az2,f(ar, bo)))
foldr(f, bo, @) = f(a1,f(a2,f(as,f(as, bo)))

foldl(+,0,(1,2,3)) =3+ (2+(1+0)) =6
foldr(+,0,(1,2,3)) =1+ (2+(34+0)) =6

)
)

roldl by @m0 fOab) | flas0r) flauba)

foldr by 2w P0), 1(030)  flazba) flanbs)




(define (trace mat)
(foldl + 0 (map list-ref
mat
(range 0 (length mat)))))

(trace '((1 2 3) (4586) (789))) => 15



(define (trace mat)
(foldl + 0 (map list-ref
mat
(range 0 (length mat)))))

(trace '((1 2 3) (4586) (789))) => 15

(foldl cons '() '"(a b c)) => (c b a)
(foldr cons '() '"(a bc)) =>(abc)
(foldl min +inf.® '(0 -3 2)) => -3.0
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Partial evaluation — Currying

fiAxB—=C
f:AxBxC—D

— f:A-(B—0)
— f:A—(B— (C— D))
(list-ref '"(a b c) 2) =>c

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

((curried-list-ref '(a b c)) 2) => ¢

((Ccurry list-ref) '(a b c)) 2) =>c



Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

(list-ref '(a b c) 2) => ¢

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

((curried-list-ref '(a b c)) 2) => ¢
((Ccurry list-ref) '(a b c)) 2) =>c
Simplified syntax:

(Ccurry list-ref '(a b c)) 2) =>c
(map (curry = 2) '(1 2 3)) => (2 4 6)



Function composition
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Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?
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Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?
(string->1list str))))

Point-free style:

(define str->alpha2
(compose list->string
(curry filter char-alphabetic?)
string->list))

n



Example — morphic sequences

Let ¢: {0,1} — {0,1}* such that ¢(0) = 011, ¢(1) = 0.
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Example — morphic sequences

Let ¢: {0,1} — {0,1}* such that ¢(0) = 011, ¢(1) = 0.
$(10110) = 001100011

Define sequence:

¢°(0) =0

$'(0) = h(0) = 011

¢*(0) = h(011) = 01100

$3(0) = h(01100) = 01100011011

12



Closures
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contain free variables.
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(define u 1)
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(fn 5))

13



Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; U is a free variable

(fn 5) ; => 6 =5 + 1

(let ([u -11)
(fn 5))

=> 6

13
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Binding scope is a portion of the source code where a value is
bound to a given name.
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Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

- Lexical scope — functions use bindings available where
defined

- Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14



Function closures

(define (make-adder x) (lambda (y) (+ x y)))
(define adderl (make-adder 10))

(define adder2 (make-adder 3))
(define adder3 (make-adder -7))
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Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adderl (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

adder1l -> (lambda (y) (+ 10 y))
adder2 -> (lambda (y) (+ 3 vy))
adder3 -> (lambda (y) (+ -7 y))
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Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adderl (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

10 y))
) (+ 3 y))
(lambda (y) y))

adderl -> (x 10) (lambda (y) (+ x y))
adder2 -> (x 3) (lambda (y) (+ x vy))
adder3 -> (x -7) (lambda (y) (+ x y))

15
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Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

- code of the function

- environment where the function was defined
A function call expression:

- Evaluates the code of a function closure

- In the environment of the function closure extended by
with bindings for the arguments
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Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10
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Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
n Down n
33)) ; defines instance

Accessor functions to all fields are automatically defined.

(person-first-name pers) => "John"
(person-surname pers) => "Down"
(person-age pers) => 33

(person? pers) => #t

(person? "John") => #f
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Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
- %KXXXX000
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DHHIREEXXXX0000; ; ; ¢
QDDA HAEHHXXXX000; ; ;
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Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
e HHXXXX000
HHHHXXX0000; ;
HIREEXXXX0000
HIEKEHHXXX0000; ;
QHHHIREEXXXX0000
QDDA HAEHHXXXX000; ; ;
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Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

Points: 10
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ascii-art
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el 0 X \%\#
Points: 10
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Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

QNN HH%%BIXXXXO!

el 0 X \%\#
Points: 10

Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)
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Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

QDDA HAEHHXXXX000; ; ;

Points: 10

Deadline: in 3 weeks (March 30)

Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19
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returns a function or both.
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What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

- curry transforms a function into its currified form.

- compose performs functional composition.

- Scheme/Racket uses lexical scope.

- Function closures are pairs storing the code of a function
together with the current environment.

20
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