Functional Programming
Lecture 3

Rostislav Horcik

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz

Higher-order functions

WHAT IF I TOLD YOU

YOU CAN PASS A
FUNCTION TO FUNCTION G seant

Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

- Allow capturing and reusing common programming
patterns

Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.

- Allow capturing and reusing common programming
patterns

- Provide higher level of abstraction

Higher-order functions

Definition
A function taking other functions as arguments or returning a
function as the result or both is called a higher-order function.
- Allow capturing and reusing common programming
patterns
- Provide higher level of abstraction

- The reason why functional programs are compact

Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '"(1 2 3)) does not work

Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '"(1 2 3)) does not work

(apply fn argl ... argN 1st)

Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ '"(1 2 3)) does not work
(apply fn argl ... argN 1st)

(apply + '(1 2 3)) =>6
(apply + -3 2 '(1 2 3)) =>5

Apply

Sometimes we need to apply a function to arguments which
are stored in a list.

(+ "(1 2 3)) does not work
(apply fn argl ... argN 1lst)

(apply + '(1 2 3)) =>6
(apply + -3 2 '(1 2 3))

> 5

(apply append '((1 2 3) (a b))) => (12 3 ab)

Higher-order functions for lists

Higher-order functions for lists

- filter — filter elements of a list w.rt. a predicate

Higher-order functions for lists

- filter — filter elements of a list w.rt. a predicate

- map — apply a function element-wise to a list/lists

Higher-order functions for lists

- filter — filter elements of a list w.rt. a predicate
- map — apply a function element-wise to a list/lists

- foldr — aggregate elements in a list using a binary
operation from right to left

Higher-order functions for lists

- filter — filter elements of a list w.rt. a predicate
- map — apply a function element-wise to a list/lists

- foldr — aggregate elements in a list using a binary
operation from right to left

- foldl — aggregate elements in a list using a binary
operation from left to right

(map fn '(a1l
"(b1

"(c1

=> ((fn

a2 ...)
b2 ...)
c2 ...))
al bl c1)

(fn a2 b2 c2) ...)

(map

(map

fn '(a1
"(bl
"(c1
=> ((fn

(lambda

a2 ...)
b2 ...)
c2 ...))
al bl c1) (fn a2 b2 ¢c2) ...)

(x) (+ 2 x)) '"(123)) =>(246)

(map fn '(al1 a2 ...)
"(b1 b2 ...)
(¢l c2 ...))

=> ((fn a1 bl c1) (fn a2 b2 ¢c2) ...)

(map (lambda (x) (* 2 x)) '"(1 2 3)) => (2 4 6)

(map list-ref '((1 2 3)
(4 5 6)
(7 8 9)) (range 0 3)) => (1 5 9)

Letf: Ax B— Bbea binary function and by € B.

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(a4,f(as,f(az,f(ar, bo))))

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(a4,f(as,f(az,f(ar, bo))))
foldr(f, bo, @) = f(ar,f(az (a3, f(as, bo))))

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(as,f(as,f(az2,f(ar, bo))))
foldr(f, bo, @) = f(ar,f(az, f(as,f(as, bo))))

foldl(+,0,(1,2,3)) =3+ (2+(14+0)) =6
foldr(+,0,(1,2,3)) =1+ (2+(3+0)) =6

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(as,f(as,f(az2,f(ar, bo)))
foldr(f, bo, d) = f(ar,f (a2, f(az,f(as, bo)))

foldl(+,0,(1,2,3)) =3+ (2+(14+0)) =6
foldr(+,0,(1,2,3)) =1+ (2+(3+0)) =6

)
)

roldl by @m0 fOab) | flas0r) flauba)

Letf: Ax B— Bbeabinary function and by € B. Given a list
d = (a1, az, a3, a,) of values from A, define

foldl(f, bo, @) = f(as,f(as,f(az2,f(ar, bo)))
foldr(f, bo, @) = f(a1,f(a2,f(as,f(as, bo)))

foldl(+,0,(1,2,3)) =3+ (2+(1+0)) =6
foldr(+,0,(1,2,3)) =1+ (2+(34+0)) =6

)
)

roldl by @m0 fOab) | flas0r) flauba)

foldr by 2w P0), 1(030) flazba) flanbs)

(define (trace mat)
(foldl + 0 (map list-ref
mat
(range 0 (length mat)))))

(trace '((1 2 3) (4586) (789))) => 15

(define (trace mat)
(foldl + 0 (map list-ref
mat
(range 0 (length mat)))))

(trace '((1 2 3) (4586) (789))) => 15

(foldl cons '() '"(a b c)) => (c b a)
(foldr cons '() '"(a bc)) =>(abc)
(foldl min +inf.® '(0 -3 2)) => -3.0

Currying and compositions

Partial evaluation — Currying

Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

(list-ref '(a b c) 2) => ¢

Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

(list-ref '(a b c) 2) => ¢

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

(list-ref '(a b c) 2) => ¢

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

((curried-list-ref '(a b c)) 2) => ¢

Partial evaluation — Currying

fiAxB—=C
f:AxBxC—D

— f:A-(B—0)
— f:A—(B— (C— D))
(list-ref '"(a b c) 2) =>c

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

((curried-list-ref '(a b c)) 2) => ¢

((Ccurry list-ref) '(a b c)) 2) =>c

Partial evaluation — Currying

fiAxB—=C = f:A—(B—=0()
fiAXxBxC—=D = f:A—(B—(C—D))

(list-ref '(a b c) 2) => ¢

(define (curried-list-ref 1st)
(lambda (i) (list-ref 1st 1i)))

((curried-list-ref '(a b c)) 2) => ¢
((Ccurry list-ref) '(a b c)) 2) =>c
Simplified syntax:

(Ccurry list-ref '(a b c)) 2) =>c
(map (curry = 2) '(1 2 3)) => (2 4 6)

Function composition

letf: A— Band g: B— C be functions.

The function composition (gof): A — Cis defined as

(gof)x) =g(f(x)

10

Function composition

letf: A— Band g: B— C be functions.

The function composition (gof): A — Cis defined as

(gof)x) =g(f(x)

10

Function composition

letf: A— Band g: B— C be functions.

The function composition (gof): A — Cis defined as

(gof)x) =g(f(x)

10

Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?
(string->1list str))))

n

Compose function

Traditional style:

(define (str->alpha str)
(list->string (filter char-alphabetic?
(string->1list str))))

Point-free style:

(define str->alpha2
(compose list->string
(curry filter char-alphabetic?)
string->list))

n

Example — morphic sequences

Let ¢: {0,1} — {0,1}* such that ¢(0) = 011, ¢(1) = 0.

12

Example — morphic sequences

Let ¢: {0,1} — {0,1}* such that ¢(0) = 011, ¢(1) = 0.
$(10110) = 001100011

12

Example — morphic sequences

Let ¢: {0,1} — {0,1}* such that ¢(0) = 011, ¢(1) = 0.
$(10110) = 001100011

Define sequence:

¢°(0) =0

$'(0) = h(0) = 011

¢*(0) = h(011) = 01100

$3(0) = h(01100) = 01100011011

12

Closures

Free variables

Lambda expressions define functions whose body might
contain free variables.

13

Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; U is a free variable

13

Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; U is a free variable

(fn 5) ; => 6 =5 + 1

13

Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; U is a free variable

(fn 5) ; => 6 =5 + 1

(let ([u -11)
(fn 5))

13

Free variables

Lambda expressions define functions whose body might
contain free variables.

(define u 1)
(define fn (lambda (x) (+ x u)))
; U is a free variable

(fn 5) ; => 6 =5 + 1

(let ([u -11)
(fn 5))

=> 6

13

Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

14

Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

- Lexical scope — functions use bindings available where
defined

14

Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

- Lexical scope — functions use bindings available where
defined

- Dynamic scope — functions use bindings available where
executed

14

Binding scopes

Binding scope is a portion of the source code where a value is
bound to a given name.

- Lexical scope — functions use bindings available where
defined

- Dynamic scope — functions use bindings available where
executed

Scheme/Racket uses the lexical scope as most of the modern
programming languages.

14

Function closures

(define (make-adder x) (lambda (y) (+ x y)))
(define adderl (make-adder 10))

(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

15

Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adderl (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

adder1l -> (lambda (y) (+ 10 y))
adder2 -> (lambda (y) (+ 3 vy))
adder3 -> (lambda (y) (+ -7 y))

15

Function closures

(define (make-adder x) (lambda (y) (+ x y)))

(define adderl (make-adder 10))
(define adder2 (make-adder 3))
(define adder3 (make-adder -7))

10 y))
) (+ 3 y))
(lambda (y) y))

adderl -> (x 10) (lambda (y) (+ x y))
adder2 -> (x 3) (lambda (y) (+ x vy))
adder3 -> (x -7) (lambda (y) (+ x y))

15

Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

- code of the function

« environment where the function was defined

Closures

A lambda expression defining a function evaluates to a
lexical/function closure value.

A lexical/function closure is a pair of pointers to:

- code of the function

- environment where the function was defined
A function call expression:

- Evaluates the code of a function closure

- In the environment of the function closure extended by
with bindings for the arguments

Applications of closures

Closures allow to “store” data in functions.

Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

Applications of closures

Closures allow to “store” data in functions.

(define (point x y)
(lambda (m) (m x y)))

(define (get-x p)
(p (lambda (x y) x)))

(define (get-y p)
(p (lambda (x y) y)))

(define p (point 3 10))
(get-x p) => 3
(get-y p) => 10

Racket allows to define new datatypes so-called structures.

Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
n Down n
33)) ; defines instance

Racket allows to define new datatypes so-called structures.

(struct person (first-name surname age)
#:transparent) ; defines type

(define pers (person "John"
n Down n
33)) ; defines instance

Accessor functions to all fields are automatically defined.

(person-first-name pers) => "John"
(person-surname pers) => "Down"
(person-age pers) => 33

(person? pers) => #t

(person? "John") => #f

Homework assignment

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
- %KXXXX000
9KKKXXXOO!

DHHIREEXXXX0000; ; ; ¢
QDDA HAEHHXXXX000; ; ;

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
- %KXXXX000
9KKKXXXOO!

DHHIREEXXXX0000; ; ; ¢
QDDA HAEHHXXXX000; ; ;

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
e HHXXXX000
HHHHXXX0000; ;
HIREEXXXX0000
HIEKEHHXXX0000; ;
QHHHIREEXXXX0000
QDDA HAEHHXXXX000; ; ;

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

Points: 10

ascii-art

XXXX0000;
HHXXXX000
HHHHXXX0000; ;
HIREEXXXX0000
HIEKEHHXXX0000; ;
QHHHIREEXXXX0000
QDDA HAEHHXXXX000; ; ;

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

XXXX0000;
e HHXXXX000
HHHHXXX0000; ;
HIREEXXXX0000
HIEKEHHXXX0000; ;
QHHHIREEXXXX0000
QDDA HAEHHXXXX000; ; ;

el 0 X \%\#
Points: 10

Deadline: in 3 weeks (March 30)

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

QNN HH%%BIXXXXO!

el 0 X \%\#
Points: 10

Deadline: in 3 weeks (March 30)
Penalty: after deadline -1 points every day (at most -9)

19

Homework assignment 1 — ASCII art generator

Aim: Practice applications of higher-order functions

ascii-art

QDDA HAEHHXXXX000; ; ;

Points: 10

Deadline: in 3 weeks (March 30)

Penalty: after deadline -1 points every day (at most -9)
Description: all details can be found in CW

19

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

- curry transforms a function into its currified form.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

- curry transforms a function into its currified form.
- compose performs functional composition.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

- curry transforms a function into its currified form.

- compose performs functional composition.

- Scheme/Racket uses lexical scope.

20

What have we learned?

- Higher-order functions have functional arguments or
returns a function or both.

- apply allows to apply a function to arguments enclosed
ina list.

- map applies a function to lists elementwise.

- foldl, foldr aggregate values in a list by a given
function.

- curry transforms a function into its currified form.

- compose performs functional composition.

- Scheme/Racket uses lexical scope.

- Function closures are pairs storing the code of a function
together with the current environment.

20

	Higher-order functions
	Higher-order functions for lists
	Currying and compositions
	Closures
	Homework assignment

