
Functional Programming
Lecture 1

Rostislav Horčík
Niklas Heim

Czech Technical University in Prague
Faculty of Electrical Engineering
xhorcik@fel.cvut.cz
heimnikl@fel.cvut.cz

Introduction

What is functional programming?

• Functional programming is a programming style that
prefers to structure computer programs as compositions
of pure functions.

• It does not depend on a programming language but some
languages are more suitable for functional programming
than others.

• Functional programming languages are languages
encouraging usage of pure functions.

1

What is functional programming?

• Functional programming is a programming style that
prefers to structure computer programs as compositions
of pure functions.

• It does not depend on a programming language but some
languages are more suitable for functional programming
than others.

• Functional programming languages are languages
encouraging usage of pure functions.

1

What is functional programming?

• Functional programming is a programming style that
prefers to structure computer programs as compositions
of pure functions.

• It does not depend on a programming language but some
languages are more suitable for functional programming
than others.

• Functional programming languages are languages
encouraging usage of pure functions.

1

Pure functions

A pure function is a function that, given the same input, will
always return the same output and has no observable side
effect.

input
f

output

outside world

X

No side effects = pure functions cannot modify and don’t
depend on any existing data structures

A pure functional program = a composition of pure functions

2

Pure functions

A pure function is a function that, given the same input, will
always return the same output and has no observable side
effect.

input
f

output

outside world

X

No side effects = pure functions cannot modify and don’t
depend on any existing data structures

A pure functional program = a composition of pure functions

2

Pure functions

A pure function is a function that, given the same input, will
always return the same output and has no observable side
effect.

input
f

output

outside world

X

No side effects = pure functions cannot modify and don’t
depend on any existing data structures

A pure functional program = a composition of pure functions

2

Examples of (im)pure functions

counter = 0

def pure(x, y):
return (x + y)/2

def do_other(x):
global counter
counter += 1
return x**2

def depends_on_other(x):
return counter + x**2

3

Advantages

• unit testing and debugging

• simpler refactoring
• concurrency and parallelism — f (g1, . . . ,gn)
• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Advantages

• unit testing and debugging

• simpler refactoring
• concurrency and parallelism — f (g1, . . . ,gn)
• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Advantages

• unit testing and debugging
• simpler refactoring

• concurrency and parallelism — f (g1, . . . ,gn)
• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Advantages

• unit testing and debugging
• simpler refactoring
• concurrency and parallelism — f (g1, . . . ,gn)

• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Advantages

• unit testing and debugging
• simpler refactoring
• concurrency and parallelism — f (g1, . . . ,gn)
• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Advantages

• unit testing and debugging
• simpler refactoring
• concurrency and parallelism — f (g1, . . . ,gn)
• formal verification — mathematical induction, algebraic
reasoning

• compiler optimization, pure functions are cachable

input f1 f2 f3 f4 · · ·

global variable

4

Consequences

• Imperative loops updates a state in each iteration. FP uses
recursion instead (stack holds the state).

• Data structures in pure functional programs are
immutable.

• To modify a data structure, we need to copy it and do the
desired modification.

• The code generated by functional programming languages
is typically less efficient.

• To reduce the number of copying, persistent data
structures are used.

5

Consequences

• Imperative loops updates a state in each iteration. FP uses
recursion instead (stack holds the state).

• Data structures in pure functional programs are
immutable.

• To modify a data structure, we need to copy it and do the
desired modification.

• The code generated by functional programming languages
is typically less efficient.

• To reduce the number of copying, persistent data
structures are used.

5

Consequences

• Imperative loops updates a state in each iteration. FP uses
recursion instead (stack holds the state).

• Data structures in pure functional programs are
immutable.

• To modify a data structure, we need to copy it and do the
desired modification.

• The code generated by functional programming languages
is typically less efficient.

• To reduce the number of copying, persistent data
structures are used.

5

Consequences

• Imperative loops updates a state in each iteration. FP uses
recursion instead (stack holds the state).

• Data structures in pure functional programs are
immutable.

• To modify a data structure, we need to copy it and do the
desired modification.

• The code generated by functional programming languages
is typically less efficient.

• To reduce the number of copying, persistent data
structures are used.

5

Consequences

• Imperative loops updates a state in each iteration. FP uses
recursion instead (stack holds the state).

• Data structures in pure functional programs are
immutable.

• To modify a data structure, we need to copy it and do the
desired modification.

• The code generated by functional programming languages
is typically less efficient.

• To reduce the number of copying, persistent data
structures are used.

5

Persistent data structures

xs

d

b g

a c f h

6

Persistent data structures

ys = insert ("e", xs)

xs

d

b g

a c f h

ys

d’

g’

f’

e

7

Necessary side effects

• A pure functional program behaves like a calculator.

• Real applications need side effects. In FP, we tend to make
the pure part of an app as large as possible, keeping the
“unsafe” effectful code to the bare minimum.

8

Necessary side effects

• A pure functional program behaves like a calculator.
• Real applications need side effects. In FP, we tend to make
the pure part of an app as large as possible, keeping the
“unsafe” effectful code to the bare minimum.

8

Necessary side effects

• A pure functional program behaves like a calculator.
• Real applications need side effects. In FP, we tend to make
the pure part of an app as large as possible, keeping the
“unsafe” effectful code to the bare minimum.

8

A bit of history

Alonzo Church Alan Turing

λ-calculus Turing machine
Functional programming Imperative programming
Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming
Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming

Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming
Composition of functions Seq. of instructions changing state

Function application Instruction execution
Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming
Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming
Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

A bit of history

Alonzo Church Alan Turing
λ-calculus Turing machine

Functional programming Imperative programming
Composition of functions Seq. of instructions changing state
Function application Instruction execution

Recursion Loops

Theorem
Turing machines and λ-calculus are equally strong regarding
computing functions.

9

Organization

Course organization

• Web: https://aicenter.github.io/FUP/

• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs

• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket

• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell

• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each

• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16

• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

Course organization

• Web: https://aicenter.github.io/FUP/
• Lectures + Labs
• BRUTE Homework assignments (50 points) ≥ 25

• 2x Racket
• 2x Haskell
• must have at least 1 point from each
• Deadlines: -1 per day until +1 is left

• Programming exam (30 points) ≥ 16
• Theoretical oral exam (20 points) ≥ 0

10

https://aicenter.github.io/FUP/

What will we learn?

• Lisp/Scheme/Racket

• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)

• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed

• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)

• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell

• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell
• pure functional language

• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell
• pure functional language
• statically typed

• rich type system
• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell
• pure functional language
• statically typed
• rich type system

• strictly separates the pure core from the mutable shell

11

What will we learn?

• Lisp/Scheme/Racket
• simple syntax (directly matches λ-calculus)
• dynamically typed
• code-as-data (easy to write interpreters,...)
• allows mutable data

• λ-calculus

• Haskell
• pure functional language
• statically typed
• rich type system
• strictly separates the pure core from the mutable shell

11

Suggested literature

[1] Harold Abelson and Gerald Jay Sussman and Julie Sussman:
Structure and Interpretation of Computer Programs, MIT Press,
1996. https://mitpress.mit.edu/sites/default/
files/sicp/full-text/book/book.html

[2] Raul Rojas. A Tutorial Introduction to the Lambda Calculus.
http://www.inf.fu-berlin.de/lehre/WS03/alpi/
lambda.pdf

[3] Graham Hutton: Programming in Haskell, Cambridge
University Press, 2016.

Course webpage: https://aicenter.github.io/FUP/

12

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
https://aicenter.github.io/FUP/

Suggested literature

[1] Harold Abelson and Gerald Jay Sussman and Julie Sussman:
Structure and Interpretation of Computer Programs, MIT Press,
1996. https://mitpress.mit.edu/sites/default/
files/sicp/full-text/book/book.html

[2] Raul Rojas. A Tutorial Introduction to the Lambda Calculus.
http://www.inf.fu-berlin.de/lehre/WS03/alpi/
lambda.pdf

[3] Graham Hutton: Programming in Haskell, Cambridge
University Press, 2016.

Course webpage: https://aicenter.github.io/FUP/

12

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
https://aicenter.github.io/FUP/

Suggested literature

[1] Harold Abelson and Gerald Jay Sussman and Julie Sussman:
Structure and Interpretation of Computer Programs, MIT Press,
1996. https://mitpress.mit.edu/sites/default/
files/sicp/full-text/book/book.html

[2] Raul Rojas. A Tutorial Introduction to the Lambda Calculus.
http://www.inf.fu-berlin.de/lehre/WS03/alpi/
lambda.pdf

[3] Graham Hutton: Programming in Haskell, Cambridge
University Press, 2016.

Course webpage: https://aicenter.github.io/FUP/

12

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
https://aicenter.github.io/FUP/

Suggested literature

[1] Harold Abelson and Gerald Jay Sussman and Julie Sussman:
Structure and Interpretation of Computer Programs, MIT Press,
1996. https://mitpress.mit.edu/sites/default/
files/sicp/full-text/book/book.html

[2] Raul Rojas. A Tutorial Introduction to the Lambda Calculus.
http://www.inf.fu-berlin.de/lehre/WS03/alpi/
lambda.pdf

[3] Graham Hutton: Programming in Haskell, Cambridge
University Press, 2016.

Course webpage: https://aicenter.github.io/FUP/

12

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
https://aicenter.github.io/FUP/

Lisp/Scheme/Racket

Lisp/Scheme/Racket

• Lisp = List processor

• Scheme is a dialect of Lisp (such as Common Lisp, Clojure)
• Scheme last standard from 2007 — The Revised6 Report on
the Algorithmic Language Scheme (R6RS)

• Racket is another dialect based on R5RS (Scheme with
batteries)

• DrRacket: racket-lang.org
text editor + REPL (read-evaluate-print loop)

13

racket-lang.org

Lisp/Scheme/Racket

• Lisp = List processor
• Scheme is a dialect of Lisp (such as Common Lisp, Clojure)

• Scheme last standard from 2007 — The Revised6 Report on
the Algorithmic Language Scheme (R6RS)

• Racket is another dialect based on R5RS (Scheme with
batteries)

• DrRacket: racket-lang.org
text editor + REPL (read-evaluate-print loop)

13

racket-lang.org

Lisp/Scheme/Racket

• Lisp = List processor
• Scheme is a dialect of Lisp (such as Common Lisp, Clojure)
• Scheme last standard from 2007 — The Revised6 Report on
the Algorithmic Language Scheme (R6RS)

• Racket is another dialect based on R5RS (Scheme with
batteries)

• DrRacket: racket-lang.org
text editor + REPL (read-evaluate-print loop)

13

racket-lang.org

Lisp/Scheme/Racket

• Lisp = List processor
• Scheme is a dialect of Lisp (such as Common Lisp, Clojure)
• Scheme last standard from 2007 — The Revised6 Report on
the Algorithmic Language Scheme (R6RS)

• Racket is another dialect based on R5RS (Scheme with
batteries)

• DrRacket: racket-lang.org
text editor + REPL (read-evaluate-print loop)

13

racket-lang.org

Lisp/Scheme/Racket

• Lisp = List processor
• Scheme is a dialect of Lisp (such as Common Lisp, Clojure)
• Scheme last standard from 2007 — The Revised6 Report on
the Algorithmic Language Scheme (R6RS)

• Racket is another dialect based on R5RS (Scheme with
batteries)

• DrRacket: racket-lang.org
text editor + REPL (read-evaluate-print loop)

13

racket-lang.org

Racket’s syntax

Racket program is a collection of expressions

• Primitive expressions (literals, built-in functions)
"Hello World!"

• Compound expressions (built by function composition)
(cos (+ 1 2))

• Definitions (introduce new names and functions)
(define (square x) (* x x))

• Comments
; This is a one-line comment
#|

This is
a block comment

|#

14

Racket’s syntax

Racket program is a collection of expressions

• Primitive expressions (literals, built-in functions)
"Hello World!"

• Compound expressions (built by function composition)
(cos (+ 1 2))

• Definitions (introduce new names and functions)
(define (square x) (* x x))

• Comments
; This is a one-line comment
#|

This is
a block comment

|#

14

Racket’s syntax

Racket program is a collection of expressions

• Primitive expressions (literals, built-in functions)
"Hello World!"

• Compound expressions (built by function composition)
(cos (+ 1 2))

• Definitions (introduce new names and functions)
(define (square x) (* x x))

• Comments
; This is a one-line comment
#|

This is
a block comment

|#

14

Racket’s syntax

Racket program is a collection of expressions

• Primitive expressions (literals, built-in functions)
"Hello World!"

• Compound expressions (built by function composition)
(cos (+ 1 2))

• Definitions (introduce new names and functions)
(define (square x) (* x x))

• Comments
; This is a one-line comment
#|

This is
a block comment

|#

14

Racket’s syntax

Racket program is a collection of expressions

• Primitive expressions (literals, built-in functions)
"Hello World!"

• Compound expressions (built by function composition)
(cos (+ 1 2))

• Definitions (introduce new names and functions)
(define (square x) (* x x))

• Comments
; This is a one-line comment
#|

This is
a block comment

|#

14

Compound expressions

Compound expressions are built from primitive expressions by
function composition.

Racket uses prefix notation. E.g.

xy2 + 3
x − 1

(/ (+ (* x y y) 3)
(- x 1))

Note how we don’t have to worry about operator precedence!

S-expression

(fn arg1 arg2 ... argN)

15

Compound expressions

Compound expressions are built from primitive expressions by
function composition.

Racket uses prefix notation. E.g.

xy2 + 3
x − 1

(/ (+ (* x y y) 3)
(- x 1))

Note how we don’t have to worry about operator precedence!

S-expression

(fn arg1 arg2 ... argN)

15

Compound expressions

Compound expressions are built from primitive expressions by
function composition.

Racket uses prefix notation. E.g.

xy2 + 3
x − 1

(/ (+ (* x y y) 3)
(- x 1))

Note how we don’t have to worry about operator precedence!

S-expression

(fn arg1 arg2 ... argN)

15

Compound expressions

Compound expressions are built from primitive expressions by
function composition.

Racket uses prefix notation. E.g.

xy2 + 3
x − 1

(/ (+ (* x y y) 3)
(- x 1))

Note how we don’t have to worry about operator precedence!

S-expression

(fn arg1 arg2 ... argN)

15

Compound expressions

Compound expressions are built from primitive expressions by
function composition.

Racket uses prefix notation. E.g.

xy2 + 3
x − 1

(/ (+ (* x y y) 3)
(- x 1))

Note how we don’t have to worry about operator precedence!

S-expression

(fn arg1 arg2 ... argN)

15

Definitions

• Naming expressions
(define id exp)

• Defining functions
(define (name arg1 ... argN)

exp1
...
expM)

• Nested definitions
(define (name a1 ... aN)

(define (fn b1 ... bM) <body-fn>)
<body-using-fn>)

16

Definitions

• Naming expressions
(define id exp)

• Defining functions
(define (name arg1 ... argN)

exp1
...
expM)

• Nested definitions
(define (name a1 ... aN)

(define (fn b1 ... bM) <body-fn>)
<body-using-fn>)

16

Definitions

• Naming expressions
(define id exp)

• Defining functions
(define (name arg1 ... argN)

exp1
...
expM)

• Nested definitions
(define (name a1 ... aN)

(define (fn b1 ... bM) <body-fn>)
<body-using-fn>)

16

Racket’s semantics

Racket program is, in fact, an expression.

Its evaluation is the computation process represented by the
program.

The evaluation resembles simplifying expressions we know
from math.

More precisely, we subsequently evaluate subexpressions until
we end up with the expression’s value.

17

Racket’s semantics

Racket program is, in fact, an expression.

Its evaluation is the computation process represented by the
program.

The evaluation resembles simplifying expressions we know
from math.

More precisely, we subsequently evaluate subexpressions until
we end up with the expression’s value.

17

Racket’s semantics

Racket program is, in fact, an expression.

Its evaluation is the computation process represented by the
program.

The evaluation resembles simplifying expressions we know
from math.

More precisely, we subsequently evaluate subexpressions until
we end up with the expression’s value.

17

Racket’s semantics

Racket program is, in fact, an expression.

Its evaluation is the computation process represented by the
program.

The evaluation resembles simplifying expressions we know
from math.

More precisely, we subsequently evaluate subexpressions until
we end up with the expression’s value.

17

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Evaluation strategy

(define (square x) (* x x))
(square (+ 3 4))

(square (+ 3 4)) => (square 7) => (* 7 7) => 49

(square (+ 3 4)) => (* (+ 3 4) (+ 3 4))
=> (* 7 7) => 49

• Evaluation strategy defines the order of evaluating the
expressions, influences program termination, not the
result

• Racket’s strategy is strict (or eager) evaluates all
arguments (left to right) before evaluating the function

• Evaluation of some syntactic forms is lazy if, cond, and, or

18

Conditional expressions

(if test-exp then-exp else-exp)

(if (> 0 1) 1 2) => 2

(if (< 0 1) 1 (+ 3 "a")) => 1

(cond [test-exp1 exp]
[test-exp2 exp]
...
[else exp])

(cond [(odd? 12) 1]
[(even? 12) 2]
[else 3]) => 2

19

Conditional expressions

(if test-exp then-exp else-exp)

(if (> 0 1) 1 2) => 2

(if (< 0 1) 1 (+ 3 "a")) => 1

(cond [test-exp1 exp]
[test-exp2 exp]
...
[else exp])

(cond [(odd? 12) 1]
[(even? 12) 2]
[else 3]) => 2

19

Conditional expressions

(if test-exp then-exp else-exp)

(if (> 0 1) 1 2) => 2

(if (< 0 1) 1 (+ 3 "a")) => 1

(cond [test-exp1 exp]
[test-exp2 exp]
...
[else exp])

(cond [(odd? 12) 1]
[(even? 12) 2]
[else 3]) => 2

19

Conditional expressions

(if test-exp then-exp else-exp)

(if (> 0 1) 1 2) => 2

(if (< 0 1) 1 (+ 3 "a")) => 1

(cond [test-exp1 exp]
[test-exp2 exp]
...
[else exp])

(cond [(odd? 12) 1]
[(even? 12) 2]
[else 3]) => 2

19

Conditional expressions

(if test-exp then-exp else-exp)

(if (> 0 1) 1 2) => 2

(if (< 0 1) 1 (+ 3 "a")) => 1

(cond [test-exp1 exp]
[test-exp2 exp]
...
[else exp])

(cond [(odd? 12) 1]
[(even? 12) 2]
[else 3]) => 2

19

Basic data types

• Numbers: exact ½, inexact 3.14, complex 2+ 3i
+, -, *, /, abs, sqrt, number?, <, >, =

• Logical values: #t, #f
and, or, not, boolean?

• Strings: "abc"
string?, substring, string-append

• Characters: #\A, #\@
char?, char->integer, integer->char,
list->string, string->list

• Other types:
symbol?, pair?, procedure?, vector?, port?

20

Basic data types

• Numbers: exact ½, inexact 3.14, complex 2+ 3i
+, -, *, /, abs, sqrt, number?, <, >, =

• Logical values: #t, #f
and, or, not, boolean?

• Strings: "abc"
string?, substring, string-append

• Characters: #\A, #\@
char?, char->integer, integer->char,
list->string, string->list

• Other types:
symbol?, pair?, procedure?, vector?, port?

20

Basic data types

• Numbers: exact ½, inexact 3.14, complex 2+ 3i
+, -, *, /, abs, sqrt, number?, <, >, =

• Logical values: #t, #f
and, or, not, boolean?

• Strings: "abc"
string?, substring, string-append

• Characters: #\A, #\@
char?, char->integer, integer->char,
list->string, string->list

• Other types:
symbol?, pair?, procedure?, vector?, port?

20

Basic data types

• Numbers: exact ½, inexact 3.14, complex 2+ 3i
+, -, *, /, abs, sqrt, number?, <, >, =

• Logical values: #t, #f
and, or, not, boolean?

• Strings: "abc"
string?, substring, string-append

• Characters: #\A, #\@
char?, char->integer, integer->char,
list->string, string->list

• Other types:
symbol?, pair?, procedure?, vector?, port?

20

Basic data types

• Numbers: exact ½, inexact 3.14, complex 2+ 3i
+, -, *, /, abs, sqrt, number?, <, >, =

• Logical values: #t, #f
and, or, not, boolean?

• Strings: "abc"
string?, substring, string-append

• Characters: #\A, #\@
char?, char->integer, integer->char,
list->string, string->list

• Other types:
symbol?, pair?, procedure?, vector?, port?

20

Simple debugging

• Helper print-outs
(begin (displayln x)

<do-work>)

• Tracing function calls and returns
(require racket/trace)
(trace fn)
(untrace fn)

21

Simple debugging

• Helper print-outs
(begin (displayln x)

<do-work>)

• Tracing function calls and returns
(require racket/trace)
(trace fn)
(untrace fn)

21

Recursion

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call
• Tree: makes several recursive calls
• Tail: the result of the recursive call is the final result of the
function

22

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call
• Tree: makes several recursive calls
• Tail: the result of the recursive call is the final result of the
function

22

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call

• Tree: makes several recursive calls
• Tail: the result of the recursive call is the final result of the
function

22

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call
• Tree: makes several recursive calls

• Tail: the result of the recursive call is the final result of the
function

22

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call
• Tree: makes several recursive calls
• Tail: the result of the recursive call is the final result of the
function

22

Recursion

Recursive function calls itself in its body.

Recursion

Linear Tree

Tail

Indirect (mutual)

f g

• Linear: makes one recursive call
• Tree: makes several recursive calls
• Tail: the result of the recursive call is the final result of the
function

22

Examples

(define (loop) (loop))

(define (fact n)
(if (<= n 1)

1
(* n (fact (- n 1)))))

(fact 4) => (* 4 (fact 3))
=> (* 4 (* 3 (fact 2)))
=> (* 4 (* 3 (* 2 (fact 1))))
=> (* 4 (* 3 (* 2 (* 1 1)))) => 24

Not space efficient. It needs O(n) memory.

23

Examples

(define (loop) (loop))

(define (fact n)
(if (<= n 1)

1
(* n (fact (- n 1)))))

(fact 4) => (* 4 (fact 3))
=> (* 4 (* 3 (fact 2)))
=> (* 4 (* 3 (* 2 (fact 1))))
=> (* 4 (* 3 (* 2 (* 1 1)))) => 24

Not space efficient. It needs O(n) memory.

23

Examples

(define (loop) (loop))

(define (fact n)
(if (<= n 1)

1
(* n (fact (- n 1)))))

(fact 4) => (* 4 (fact 3))
=> (* 4 (* 3 (fact 2)))
=> (* 4 (* 3 (* 2 (fact 1))))
=> (* 4 (* 3 (* 2 (* 1 1)))) => 24

Not space efficient. It needs O(n) memory.

23

Examples

(define (loop) (loop))

(define (fact n)
(if (<= n 1)

1
(* n (fact (- n 1)))))

(fact 4) => (* 4 (fact 3))
=> (* 4 (* 3 (fact 2)))
=> (* 4 (* 3 (* 2 (fact 1))))
=> (* 4 (* 3 (* 2 (* 1 1)))) => 24

Not space efficient. It needs O(n) memory.

23

Example — Tail recursion

(define (fact n [acc 1])
(if (<= n 1)

acc
(fact (- n 1) (* n acc))))

(fact 4) = (fact 4 1)
=> (fact 3 4)
=> (fact 2 12)
=> (fact 1 24)
=> 24

This needs O(1) memory due to tail elimination.

24

Example — Tail recursion

(define (fact n [acc 1])
(if (<= n 1)

acc
(fact (- n 1) (* n acc))))

(fact 4) = (fact 4 1)
=> (fact 3 4)
=> (fact 2 12)
=> (fact 1 24)
=> 24

This needs O(1) memory due to tail elimination.

24

Example — Tail recursion

(define (fact n [acc 1])
(if (<= n 1)

acc
(fact (- n 1) (* n acc))))

(fact 4) = (fact 4 1)
=> (fact 3 4)
=> (fact 2 12)
=> (fact 1 24)
=> 24

This needs O(1) memory due to tail elimination.

24

Example – Tree recursion

Consider a tree-like fractal of a given size n and direction d in
degrees generated by:

1. Draw a stick of size n in the direction d.

2. Draw the fractal of size n/2 in the direction d+ 60.
3. Draw the fractal of size n/2 in the direction d− 60.
4. Draw a stick of size n in the direction d.
5. Draw the fractal of size n− 1 in the direction d+ 5.

25

Example – Tree recursion

Consider a tree-like fractal of a given size n and direction d in
degrees generated by:

1. Draw a stick of size n in the direction d.
2. Draw the fractal of size n/2 in the direction d+ 60.

3. Draw the fractal of size n/2 in the direction d− 60.
4. Draw a stick of size n in the direction d.
5. Draw the fractal of size n− 1 in the direction d+ 5.

25

Example – Tree recursion

Consider a tree-like fractal of a given size n and direction d in
degrees generated by:

1. Draw a stick of size n in the direction d.
2. Draw the fractal of size n/2 in the direction d+ 60.
3. Draw the fractal of size n/2 in the direction d− 60.

4. Draw a stick of size n in the direction d.
5. Draw the fractal of size n− 1 in the direction d+ 5.

25

Example – Tree recursion

Consider a tree-like fractal of a given size n and direction d in
degrees generated by:

1. Draw a stick of size n in the direction d.
2. Draw the fractal of size n/2 in the direction d+ 60.
3. Draw the fractal of size n/2 in the direction d− 60.
4. Draw a stick of size n in the direction d.

5. Draw the fractal of size n− 1 in the direction d+ 5.

25

Example – Tree recursion

Consider a tree-like fractal of a given size n and direction d in
degrees generated by:

1. Draw a stick of size n in the direction d.
2. Draw the fractal of size n/2 in the direction d+ 60.
3. Draw the fractal of size n/2 in the direction d− 60.
4. Draw a stick of size n in the direction d.
5. Draw the fractal of size n− 1 in the direction d+ 5.

25

Fractal example

26

Fractal example

To draw a picture, we use the library value-turtles.

Its functions operates on an image together with a position
and direction of a turtle.

E.g. (draw 100 img)

27

Fractal example

To draw a picture, we use the library value-turtles.

Its functions operates on an image together with a position
and direction of a turtle.

E.g. (draw 100 img)

27

Fractal example

To draw a picture, we use the library value-turtles.

Its functions operates on an image together with a position
and direction of a turtle.

E.g. (draw 100 img)

27

Fractal example

To draw a picture, we use the library value-turtles.

Its functions operates on an image together with a position
and direction of a turtle.

E.g. (draw 100 img)

27

What have we learned?

• A pure function always returns the same output on a fixed
input and has no side effects.

• Make the pure part of a program as large as possible,
keeping the code handling the state transparent and
small.

• Functional languages handle iterative computations by
recursion.

• We classify recursive functions according to the number of
recursive calls they make on linear-recursive and
tree-recursive functions.

• Tail recursive functions are space efficient as they do not
consume memory by making recursive calls.

28

What have we learned?

• A pure function always returns the same output on a fixed
input and has no side effects.

• Make the pure part of a program as large as possible,
keeping the code handling the state transparent and
small.

• Functional languages handle iterative computations by
recursion.

• We classify recursive functions according to the number of
recursive calls they make on linear-recursive and
tree-recursive functions.

• Tail recursive functions are space efficient as they do not
consume memory by making recursive calls.

28

What have we learned?

• A pure function always returns the same output on a fixed
input and has no side effects.

• Make the pure part of a program as large as possible,
keeping the code handling the state transparent and
small.

• Functional languages handle iterative computations by
recursion.

• We classify recursive functions according to the number of
recursive calls they make on linear-recursive and
tree-recursive functions.

• Tail recursive functions are space efficient as they do not
consume memory by making recursive calls.

28

What have we learned?

• A pure function always returns the same output on a fixed
input and has no side effects.

• Make the pure part of a program as large as possible,
keeping the code handling the state transparent and
small.

• Functional languages handle iterative computations by
recursion.

• We classify recursive functions according to the number of
recursive calls they make on linear-recursive and
tree-recursive functions.

• Tail recursive functions are space efficient as they do not
consume memory by making recursive calls.

28

What have we learned?

• A pure function always returns the same output on a fixed
input and has no side effects.

• Make the pure part of a program as large as possible,
keeping the code handling the state transparent and
small.

• Functional languages handle iterative computations by
recursion.

• We classify recursive functions according to the number of
recursive calls they make on linear-recursive and
tree-recursive functions.

• Tail recursive functions are space efficient as they do not
consume memory by making recursive calls.

28

	Introduction
	Organization
	Lisp/Scheme/Racket
	Recursion

